#Dataquality

Jessica Bennetjessicabennet
2025-06-23

AI adoption matures, but big challenges remain

68% of companies now run custom AI in production, with 81% spending $1M+ annually. But issues like poor data, tough training, and project delays still slow progress. As AI goes mainstream, control and trust are the next big frontiers.

artificialintelligence-news.co

Teracoreteracore
2025-06-22

A well-structured survey facilitates the collection of high-quality data, and engages participants in a meaningful way.

Read more 👉 lttr.ai/AeTue

Yonhap Infomax Newsinfomaxkorea
2025-06-18

Fed Chair Powell underscores the critical public value of high-quality economic data amid mounting concerns over statistical reliability.

en.infomaxai.com/news/articleV

2025-06-18

هل نواجه "تلوّثًا رقميًا" يُهدد مستقبل #الذكاء_الاصطناعي؟
منذ إطلاق #ChatGPT في 2022، يشبّه خبراء الذكاء الاصطناعي ما حدث بانفجار أول قنبلة ذرية!لماذا ؟
👇👇👇
#AI #ModelCollapse #DataQuality #ChatGPT #ArtificialIntelligence #Ethics #TechPolicy

tinyurl.com/5n9xhc6v

PromptCloudpromptcloud
2025-06-18

Scraping isn’t just about data collection.

It’s about precision:
✔️ Accurate values
✔️ Consistent formats
✔️ Real-time reliability

General-purpose AI often falls short.

That’s why more teams trust PromptCloud for scalable, structured web data.

📖 Read the full breakdown: shorturl.at/1oTaR

PromptCloudpromptcloud
2025-06-13

Bots don’t scroll — they crawl. 🕷️

Today’s explains what a web crawler is and why it matters.

👉 bit.ly/43In4ur

PromptCloudpromptcloud
2025-06-12

Others are still setting up proxies.

PromptCloud? Already delivered the data.

Pricing. Benchmarking. Market research, at scale.

⚡ That’s what winning looks like.
👉 bit.ly/43VArWP

PromptCloudpromptcloud
2025-06-06

Think you’re human?
Prove it.
That’s what a CAPTCHA asks.

Today’s breaks down CAPTCHA types & what bypassing them means in web scraping.

📌 How do smart bots get past them?

👉 bit.ly/4kSRrUA

2025-06-06

#dataquality #Surveydata #digitalbehavioraldata #linkeddatasources
Official launch of the #KODAQS #Toolbox in July 2025

The KODAQS Toolbox is a new, open platform for assessing and improving data quality in the social sciences. It supports researchers in systematically reflecting on the quality of their data - along three central data types: Survey data, digital behavioral data (e.g. app or sensor data) and linked data sources (e.g. register and geospatial data).
kodaqs-toolbox.gesis.org/

PromptCloudpromptcloud
2025-06-05

Imagine waking up to fresh, structured, compliant data.

Every. Single. Day.

That’s not a dream. That’s !

Julien Benedettimacgraveur@framapiaf.org
2025-06-04

Tiens hier a été lancé une concertation IA et culture (bon en fait industrie culturelle) par C.Chappaz et R.Dati via la CSPLA. Dans les deux discours il est fait mention de qualité de la donnée et de donnée fiable. J'avoue j'ai ri mais j'ai ri. cc @CharlesNepote #DataLove #dataquality #IA #AI

PromptCloudpromptcloud
2025-06-02

Web scraping needs vary widely, so should your approach.
Should you:

• Build your own custom scrapers?
• Use a plug-and-play scraping tool?
• Go fully managed with a web scraping service?

In this blog, we simplify the decision-making process with a no-fluff comparison of:
✅ Cost
✅ Control
✅ Scalability
✅ Maintenance

🔗 Read the full blog: bit.ly/3ZHWxL6

Garbage in, garbage out – even Agentic AI can’t save you from yourself.

Artificial intelligence is only as brilliant as the data it’s spoon-fed – and spoiler alert: your data is often trash.
Whether it’s traditional machine learning, generative models, or your shiny new agentic systems, the pattern remains insultingly consistent:
• Bad data? Expect bad decisions.
• Incomplete data? Enjoy half-baked ideas.
• Outdated data? Say hello to irrelevant nonsense.

I often talk about what AI can or tragically still can’t do.
But here’s the real twist: the problem isn’t the system. It’s you. Or more specifically, the glorious mess you call your “data foundation.”

You don’t have a lack of innovation.
You have a lack of clean data structures, maintained knowledge bases, and basic contextual awareness.
And then you expect the AI to magically fill gaps that should never have existed in the first place.

#ArtificialIntelligence #MachineLearning #DataScience #DataQuality #DataManagement #BigData #coding #Programming

2025-05-21

#GESISGuides #DBD #DataQuality
Three new GESIS Guides to Digital Behavioral Data out now - get helpful information on data quality now:

* Bleier, A.: What is Computational Reproducibility?

* Fröhling, L., Birkenmaier, L., Lux, V., & Daikeler, J.: How to Find and Explore Data Quality Frameworks for Digital Behavioral Data

*Lux, V., & Wieland, M.: How to Set up and Monitor App-based Data Collections

Check out the whole collection of our Guides to DBD:
gesis.org/en/gesis-guides/gesi

HEDDA.IOheddaio
2025-05-21

Building data pipelines is hard enough—keeping them reliable shouldn't be a guessing game.

Our blog post covers practical for engineers—catch issues early, validate better, and build trust in your workflows.

👉 Read more: hedda.io/data-observability-fo

2025-05-21

Hast du Fragen zu OpenRefine & brauchst Unterstützung bei deinen Projekten? Dann komm zu unserer regelmäßigen OpenRefine Sprechstunde!

🗓 Wann?
Do. 22.05. 15:00 – 16:00 Uhr
📍 Wo?
Online

Nutzt die Gelegenheit, um eure Fragen zu klären, Tipps zu erhalten oder gemeinsam an euren Datenprojekten zu arbeiten.
Alle Infos & Link: sammlungen.io/termine/openrefi
#SODaZentrum #OpenRefine #Dataquality #DataLiteracy

@SODa Das Bild zeigt das Logo von OpenRefine. Es besteht aus einem blauen Diamanten auf der linken Seite und dem Text "OpenRefine" auf der rechten Seite. Der Diamant ist in verschiedenen Blautönen gehalten und hat eine facettenreiche Struktur, die ihm ein dreidimensionales Aussehen verleiht. Der Text "OpenRefine" ist in einer schlichten, schwarzen Schrift geschrieben und steht rechts neben dem Diamanten. Der Hintergrund des Logos ist weiß.
💧🌏 Greg CocksGregCocks@techhub.social
2025-05-20

A Comprehensive Framework For Evaluating The Quality Of Street View Imagery
--
doi.org/10.1016/j.jag.2022.103 <-- shared paper
--
“HIGHLIGHTS
• [They] propose the first comprehensive quality framework for street view imagery.
• Framework comprises 48 quality elements and may be applied to other image datasets.
• [They] implement partial evaluation for data in 9 cities, exposing varying quality.
• The implementation is released open-source and can be applied to other locations.
• [They] provide an overdue definition of street view imagery..."
#GIS #spatial #mapping #streetlevelimagery #Crowdsourcing #QualityAssessmentFramework #Heterogeneity #imagery #dataquality #metrics #QA #urban #cities #remotesensing #spatialanalysis #StreetView #Google #Mapillary #KartaView #commercial #crowsourced #opendata #consistency #standards #specifications #metadata #accuracy #precision #spatiotemporal #terrestrial #assessment

Recce - Trust, Verify, ShipDataRecce
2025-05-15

What breaks if I change this column?

Read our technical deep-dive into how Recce constructs column-level lineage from models

- How we track column origins and transformations using SQLGlot

- How we classify columns as pass-through, renamed, derived, or source

- How we handle tricky edge cases like SELECT *, name collisions, and macro expansion

Read more:
datarecce.io/blog/column-level

PromptCloudpromptcloud
2025-05-14

Still stuck manually copying rows?

Somewhere out there, someone’s still copy-pasting 10,000 of them.

📊 Schedule a demo to see how easy automated data extraction can be: bit.ly/3ZcTxpS

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst