Алгоритмы AdaBoost (SAMME & R2). Принцип работы и реализация с нуля на Python
Следующим мощным алгоритмом машинного обучения является AdaBoost (adaptive boosting), в основе которого лежит концепция бустинга, когда слабые базовые модели последовательно объединяются в одну сильную, исправляя ошибки предшественников. В AdaBoost в качестве базовой модели используется пень решений (могут использоваться другие модели) — дерево с небольшой глубиной, которому присваивается вектор весов размера N, каждое значение которого соответствует определённому значению y_train и изначально равно 1 / N, где N — количество образцов в обучающей выборке. Каждый следующий пень обучается с учётом весов, рассчитанных на основе ошибок предыдущего прогноза. Также для каждого обученного пня отдельно рассчитывается вес, используемый для оценки важности итоговых прогнозов.
https://habr.com/ru/articles/800499/
#adaboost #реализация_с_нуля #алгоритмы_машинного_обучения #python #принцип_работы #data_science #машинное_обучение