#deepresearch

StepFun (@StepFun_ai)

Step-DeepResearch라는 새로운 엔드투엔드(End-to-End) 딥 리서치 에이전트를 발표했습니다. 단순 웹 크롤러와 달리 '연구자'의 전문적 인지 루프를 내재화한 리서처를 목표로 하며, 기술 스택에 'Native Atomic Capabilities' 같은 새로운 구성요소를 도입했다고 설명합니다. 리서치 자동화와 에이전트 연구 도구의 진화 방향을 제시합니다.

x.com/StepFun_ai/status/201512

#stepdeepresearch #researchagent #deepresearch #agent

2026-01-22

ИИ-агенты: как мы сделали DeepResearch по корпоративным данным и кодовой базе

ИИ‑агенты — очень горячая тема. Кажется, все их делают, но также кажется, что реальную пользу приносит только небольшая часть. Один из основных удачных примеров — DeepResearch, глубокий поиск, отвечающий на сложные вопросы. Многие им пользуются в ChatGPT или Perplexity, но у внешних решений нет доступа к нашим корпоративным данным, поэтому мы сделали свой DeepResearch и сэкономили время сотрудников компании. Меня зовут Сергей Скородумов, я руководитель отдела поисковых сервисов. В статье расскажу про ИИ‑агентов в целом, как мы делали своего, за счёт чего растили его качество и какие главные выводы сделали.

habr.com/ru/companies/yandex/a

#ии_агенты #ии #ииагенты #ииассистент #deepresearch

2026-01-19

Exhibit B of Gemini overthinking a problem.

Yesterday it was the GDP of Pakistan instead of my website design. Now when I asked it about a Raspberry Pi build, it's thinking about the philosophy of the build itself by reviewing Steve Jobs quotes.

#DEEPresearch

testtm (@test_tm7873)

StepFun의 신제품/서비스 'StepFun DeepResearch' 사용 권유 트윗: 해당 서비스가 'Step 3'로 구동되며 작성자는 초대 코드 2개를 보유 중이라고 알림. 트윗에서 공식 계정(@StepFun_ai)에 감사 표명.

x.com/test_tm7873/status/20122

#stepfun #deepresearch #ai #invites

2026-01-14

Google sprząta w Gemini. Koniec z bałaganem w plikach Deep Research i Canvas

Gigant z Mountain View powoli, ale skutecznie zmienia Gemini z prostego chatbota w kombajn do pracy biurowej.

Najnowsza aktualizacja webowej wersji usługi rozwiązuje jeden z najbardziej irytujących problemów „power userów”: bałagan w wygenerowanych plikach. Sekcja „Moje rzeczy” zyskała właśnie dedykowany widok dla dokumentów.

Do tej pory wszystko, co stworzyliśmy w Gemini – od obrazków, przez kod, po długie raporty – lądowało w jednym worku, wyświetlanym jako siatka zaokrąglonych kafelków. Wyglądało to ładnie, ale przy dłuższych tytułach dokumentów było kompletnie nieczytelne. Google wreszcie to dostrzegł.

Pomóż nam rozwijać iMagazine – ruszyło badanie czytelnictwa 2026

Lista zamiast kafelków

W najnowszej odsłonie, po kliknięciu w panel boczny „Moje Rzeczy”, zobaczymy ponoć (widzą to już Amerykanie, u nas w redakcji mamy jeszcze stary widok) podział na dwie logiczne sekcje:

  • Media: tu nadal znajdziemy wygenerowane obrazy i wideo w starym układzie siatki.
  • Documents: to nowość stworzona z myślą o użytkownikach funkcji Deep Research oraz Canvas.

Raporty z głębokiego researchu, fragmenty kodu czy teksty są teraz prezentowane w formie przejrzystej listy. Dzięki temu wreszcie widać pełne nazwy plików, a nowe ikony po lewej stronie pozwalają błyskawicznie odróżnić raport badawczy od projektu programistycznego. To mała zmiana UI, która drastycznie poprawia UX – zwłaszcza jeśli używacie Gemini do generowania dziesiątek materiałów tygodniowo.

Na razie tylko w przeglądarce

Zmiany są obecnie widoczne w webowej wersji Gemini. Aplikacje na Androida i iOS wciąż czekają na aktualizację. Warto jednak odnotować inną nowość w świecie mobilnym – w menu konta w aplikacji Gemini pojawił się skrót do NotebookLM.

Co ciekawe, kliknięcie w niego nie otwiera dedykowanej aplikacji (nawet jeśli mamy ją zainstalowaną), a przenosi nas do pełnej, desktopowej wersji strony internetowej narzędzia. Wygląda na to, że Google wciąż szuka sposobu na idealne spięcie swoich rosnących zasobów AI w jeden ekosystem.

Trzęsienie ziemi w Cupertino. Apple potwierdza: Gemini od Google fundamentem nowej Siri

#aktualizacjaGemini #Canvas #DeepResearch #GoogleGemini #news #NotebookLM #sztucznaInteligencja #UIUX
Google Gemini
PressMind Labspressmind
2026-01-09

ZombieAgent atakuje ChatGPT – kolejna luka w systemie AI ujawniona

Czy można naprawić sztuczną inteligencję, która z natury chce każdemu dogodzić? Nowy atak na ChatGPT pokazuje, że kiedy stawiamy wyższą barierkę, ktoś po prostu znajduje dłuższą drabinę.

Czytaj dalej:
pressmind.org/zombieagent-atak

Ilustracja przedstawiająca postać wykradającą dane z interfejsu ChatGPT w mrocznym otoczeniu.
iCode2Ifeanyi5
2026-01-06

Hi, folks!

I gave Gemini Deep Research Agent a try. I used it to research the history of knowledge graphs, and it did an amazing job.

I also extracted an interactive semantic knowledge graph from the research text.

You can read the research and explore the knowledge graph at this website:

kg-history-research.netlify.ap

Code available here in a Colab notebook:

github.com/Ifeanyi55/GephiData

Please star 🌟 the repository to support its continued maintenance 🙏

2026-01-06

I asked GPT 5.2 deep research to do an analysis of my intellectual style by exploring a sample of my blog posts

It’s slightly unsettling it has written this in the first person! This is all GPT 5.2 rather than me:

What follows are not positions so much as habits of thought.

1. Take the narrow problem frame, then widen it until the stakes show up

A recurring pattern is to start from the immediate debate, assessment integrity, detection, social media engagement, and then widen the frame to institutional adaptation, labour, incentives, and harms. It is a refusal of the convenience of technical fixes.

2. Treat technologies as structures with powers, not tools with uses

This is the move that underpins most of my work on platforms and now on LLMs. Once you treat the object as structure, you start asking different questions: what does it condition, what does it incentivise, what does it make easy, what does it make costly, and who bears those costs.

3. Look for mechanisms that connect political economy to inner life

Distraction, cognitive triage, communicative escalation, epistemic flooding: these are not just descriptive flourishes. They are the conceptual bridge between macro conditions and what it feels like to think and act in a given environment.

4. Refuse the pro anti binary, without collapsing into fence sitting

I often try to hold ambivalence, because technologies can enable solidarity and flatten hierarchies while also generating toxicity and new burdens. The move is to specify conditions and distributions rather than deliver a verdict.

5. Use time as an analytic dimension, not just a background variable

I keep returning to biographies, trajectories, and the temporal conditions for critique. Acceleration matters because it changes the conditions under which reflection is possible, and it changes what kinds of work can be done well.

6. Convert everyday scenes into theoretical probes

A film, a management practice, a platform feature, a cultural artefact becomes a way of getting at a mechanism. This is how the blog often works: theory is tested against scenes, and scenes become legible through theory.

7. Treat institutions as moral economies, not neutral containers

Universities are not just rule sets. They are systems of responsibility allocation, blame distribution, and risk management. A lot of my writing on AI in higher education is really about this, who gets trusted, who gets suspected, who gets protected, and who is made to absorb uncertainty.

8. Read “inexorability” talk as a political manoeuvre

When someone says “this is inevitable,” I tend to hear a bid to foreclose alternatives and dissolve responsibility. The counter move is to insist on mediation: incentives, infrastructures, and choices.

9. Treat the epistemic environment as an object in its own right

Instead of focusing only on claims and counterclaims, I focus on the conditions under which claims circulate, stick, and become actionable. Epistemic chaos and epistemic flooding are ways of shifting attention from content to environment.

10. Translate abstract theory into a vocabulary that can travel

The blog repeatedly works as a translation machine: taking Archer, Habermas, psychoanalysis, and pulling out handles that can be used in everyday description. If it cannot travel, it cannot do explanatory work outside a small circle.

11. Turn reflexivity itself into an object of inquiry

Rather than treating reflexivity as a given capacity, I treat it as variable, patterned, and historically conditioned, and I keep asking what kinds of environments cultivate what kinds of inner dialogue.

12. Use the blog as a method of serial thinking

There is a recurring practice of working through a book, a concept, or a problem in public, chapter by chapter or post by post, because writing clarifies. This is a methodological commitment, not just a communication choice.

13. Keep returning to dependence

From early writing on the self as an object of control and dependence, through social media as moral psychology, to LLMs as embedded in lifeworld activity, the recurring question is what we become dependent on, what dependency does to agency, and how dependencies are organised.

14. Treat degradation as a process, not an event

This is why enshittification matters as a concept, and why I care about how concepts themselves get degraded by platform circulation. The analytic focus stays on how, not merely that.

15. Look for feedback loops

Generative systems feed platforms with more content, which intensifies attention competition, which worsens epistemic conditions, which increases the appeal of tools that promise relief, which further embeds those tools. A lot of my recent writing is trying to name these loops early, before they harden into “common sense.”

#blogging #deepResearch #GPT52 #theorising #theory

PressMind Labspressmind
2025-12-30

Google przestawia AI na użyteczność – Gemini 3 Flash w akcji

Czy AI wreszcie przestaje być pokazem na konferencjach i zaczyna robić realną robotę w twojej przeglądarce, słuchawkach i wyszukiwarce? W grudniu Google przesunął wajchę z „wow” na „użyteczne”.

Czytaj dalej:
pressmind.org/google-przestawi

Ilustracja przedstawiająca interfejs przeglądarki z funkcjami AI w futurystycznym stylu.

This is a very interesting, detailed analysis that a Redditor did testing 8 deep research APIs side-by-side. It was especially interesting as many of the test queries were related to economics and would require retrieving current information from the web instead of just searching open access academic articles.

reddit.com/r/deep_research/com

#research #AItools #deepResearch

AI Daily Postaidailypost
2025-12-17

Google just opened its Gemini Deep Research agent through the new Interactions API, letting developers tap a long‑horizon, model‑context protocol for richer, multi‑turn queries. It’s a big step for open‑source‑friendly LLM research—how will it stack up against OpenAI’s offerings?

🔗 aidailypost.com/news/google-la

🤖 #Google оновив агента #Gemini #DeepResearch - тепер він працює на базі Gemini 3.

blog.google/technology/develop

TechCrunch | Startup and Technology Newstechcrunch.com@web.brid.gy
2025-12-12
S.v. N.Sönmeznsonmez84
2025-12-12

Google yeni Deep Research'i duyurdu: Gemini 3 Pro destekli derin araştırma ajansı. Yalnızca geliştiricilere açık, testlerde rakiplerini geride bırakıyor. 2025’in ilk çeyreğinde geniş kitlelere açılacak. Gelişmeyle ilgili detaylar için bizi izleyin!

🚩

2025-12-11

Google ra mắt **Interactions API** - giao diện thống nhất kết nối các mô hình AI như Gemini 3 Pro và agents như Gemini Deep Research. Hiện đã mở public beta cho lập trình viên qua Google AI Studio. #Google #GeminiAPI #AIDeveloper #AI #MôHìnhAI #LậpTrìnhViên #DeepResearch #API #CôngNghệAI #GoogleAI

i.redd.it/89rdemj10m6g1.jpeg

2025-12-09

Deep Research, Shallow Agency: What Academic Deep Research Can and Can't Do" aarontay.substack.com/p/how-agentic-… #AI #academic #DeepResearch

This simple citation gap test reveals that most current Academic Deep Search and Deep Research tools are workflow-based agents
operating within predefined patterns-not flexible reasoning systems that analyze task structure and devise novel approaches.
This doesn't diminish their value. Academic Deep Search's iterative retrieval with LLM-based relevance judgment is a genuine breakthrough.
Deep Research's ability to generate well-cited reports fills real needs. These tools ARE agents in the technical sense, and within their designed scope, they work impressively.
But marketing language suggesting flexible reasoning, autonomous problem-solving, and human-like research assistance probably overstates current capabilities and can lead to misunderstanding by users who take the term
"agent" or "research assistant" at face value.
Again Academic Deep Research tools are genuinely useful but you have to be careful with the type of literature review tasks you try to do.
2025-12-09

Deep Research, Shallow Agency: What Academic Deep Research Can and Can't Do" aarontay.substack.com/p/how-ag #AI #academic #DeepResearch

This simple citation gap test reveals that most current Academic Deep Search and Deep Research tools are workflow-based agents
operating within predefined patterns-not flexible reasoning systems that analyze task structure and devise novel approaches.
This doesn't diminish their value. Academic Deep Search's iterative retrieval with LLM-based relevance judgment is a genuine breakthrough.
Deep Research's ability to generate well-cited reports fills real needs. These tools ARE agents in the technical sense, and within their designed scope, they work impressively.
But marketing language suggesting flexible reasoning, autonomous problem-solving, and human-like research assistance probably overstates current capabilities and can lead to misunderstanding by users who take the term
"agent" or "research assistant" at face value.
Again Academic Deep Research tools are genuinely useful but you have to be careful with the type of literature review tasks you try to do.

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst