#DataDrift

2025-06-24

๐Ÿ›‘ ๐—œ๐˜โ€™๐˜€ ๐—ป๐—ฒ๐˜ƒ๐—ฒ๐—ฟ ๐˜๐—ผ๐—ผ ๐—น๐—ฎ๐˜๐—ฒ ๐˜๐—ผ ๐—ด๐—ผ ๐—ฝ๐—ฟ๐—ถ๐˜ƒ๐—ฎ๐˜๐—ฒโ€”๐—ต๐—ฒ๐—ฟ๐—ฒโ€™๐˜€ ๐˜„๐—ต๐˜† โ€œ๐˜‚๐—ป๐—น๐—ฒ๐—ฎ๐—ฟ๐—ป๐—ถ๐—ป๐—ดโ€ ๐—ณ๐—ฎ๐—น๐—น๐˜€ ๐˜€๐—ต๐—ผ๐—ฟ๐˜

๐Ÿ“‰ Harvard/MIT: 91% of real-world models suffer data drift and need retraining anyway.
โš™๏ธ UNC + DeepMind (2024): exact unlearning still needs several complete fine-tune passes per deletionโ€”massive compute overhead.

Stack those two facts and every delete-request turns into an expensive, repetitive fire drill.

๐˜‰๐˜ฆ๐˜ต๐˜ต๐˜ฆ๐˜ณ: keep sensitive data out of the weights from the start. ๐—–๐—ข๐—ก๐—™๐—ฆ๐—˜๐—–โ€™s attested enclaves make prompts private on day oneโ€”no unlearning treadmill later.

#PrivacyByDesign #DataDrift #MachineUnlearning #ConfidentialComputing

Doug Ortizdougortiz
2025-03-26

๐Ÿค– MLOps: The Missing Link in Your Machine Learning Strategy ๐Ÿ”—

MLOps bridges the gap between data science and engineering, creating sustainable ML systems that actually work in the real world.

A proper MLOps workflow includes:
๐Ÿ”„ Automated data ingestion
๐Ÿงช Continuous model training
๐Ÿ“Š Performance monitoring
๐Ÿšจ Drift detection
๐Ÿš€ Seamless redeployment

๐Ÿ‘€ link.illustris.org/mlopscode2p

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst