An excellent general result.
If \(\Re(s)>1\),
\[\displaystyle\int_0^\infty\frac{\ln x}{x^s+1}~\mathrm dx=\frac{\pi^2}{4s^2}\left[\sec^2\left(\frac{\pi}{2s}\right)-\csc^2\left(\frac{\pi}{2s}\right)\right]\]
Special cases:
\[\displaystyle\int_0^\infty\frac{\ln x}{x^2+1}~\mathrm dx=0\]
\[\displaystyle\int_0^\infty\frac{\ln x}{x^3+1}~\mathrm dx=-\frac{2\pi^2}{27}\]
\[\displaystyle\int_0^\infty\frac{\ln x}{x^4+1}~\mathrm dx=-\frac{\pi^2}{8\sqrt2}\]
\[\displaystyle\int_0^\infty\frac{\ln x}{x^5+1}~\mathrm dx=-\frac{4\pi^2}{25}\left(\frac{2+\sqrt5}{5+\sqrt5}\right)=-\frac{(5+3\sqrt5)\pi^2}{125}\]
#Integral #Integrals #GeneralResult #GeneralResults #Result #Results #Logarithms #Logarithm #Integration #DefiniteIntegral #Calculus #IntegralCalculus