Контроль качества разметки на проекте: делай как ОКК
Существует известное правило: “мусор на входе, мусор на выходе”. Все знают, что “чистые”, точные данные повышают качество и корректность работы ИИ-моделей, так что итоговая ценность оправдывает дополнительные усилия и вложения. Намного дешевле компаниям выходит предотвратить проблемы с данными, чем решать их после. Но как контролировать качество на проектах разметки максимально эффективно? Выстроить такие процессы непросто, но мы считаем, что у нас это получилось. Для того, чтобы гарантировать на каждом проекте высокое качество разметки, в Data Light существует отдел Контроля качества. Я, Евгений Шилкин, руководитель ОКК, расскажу, что нам позволяет обеспечивать стабильно высокое качество на проектах и какие советы для эффективной валидации мы можем дать.
https://habr.com/ru/companies/data_light/articles/848234/
#ai #ml #data_annotation #разметка_данных #project_management #bigdata #data_validation