#feature_store

2025-06-03

MVP по «умному» поиску данных

Всем привет, меня зовут Александр, я аналитик в Альфа-Банке. Совместно с командой мы разрабатываем и развиваем платформу для дата-инженеров (DE) и дата-саентистов (DS), именуемую Feature Store. Она даёт возможность коллегам работать с большими данными и упрощает бюрократию жизненного цикла создания ETL и ввода моделей в промышленную эксплуатацию. Но хотелось бы улучшить процесс по поиску данных в ней, так как объёмы информации стремительно растут. Классический поиск выдаёт результаты по точному совпадению, и это не самый удобный вариант, когда данных много. Поэтому нужную информацию, если ты точно не знаешь как найти, невозможно отыскать. Озадачившись этой проблемой, я решил сделать MVP «умного» поиска, который позволяет искать данные/фичи/поля не по точному совпадению, а с учётом смысла. Надеюсь, данная статья поможет показать и пролить свет на вопрос — «А как же ещё бывает?»

habr.com/ru/companies/alfa/art

#mvp #gpt #ai #feature_store #data_science #datamarket #mlops #токенизатор #классификация

2025-05-14

Переходим от legacy к построению Feature Store

Невероятная история о том, как внедрить систему Feature Store в проект с огромным legacy и получить профит. Привет, Хабр! Меня зовут Евгений Дащенко, я из компании «Домклик», которая решает все вопросы, связанные с недвижимостью, включая оценку стоимости недвижимости любого типа. Это статья по мотивам моего доклада на конференции Highload++ про интерфейс между данными и ML-моделями Feature Store: как мы сделали его с нашей командой, каких результатов добились и с какими подводными камнями столкнулись на пути.

habr.com/ru/companies/oleg-bun

#feature_store #ml #mlops #ai #python #машинное_обучение #архитектура #обработка_данных #ops #data_science

2024-10-04

Как в Купере масштабировали машинное обучение и что из этого получилось

Не секрет, что ML‑модели требуют огромного количества данных. Информации не просто много, она организовывается в многообразные структуры, версионируется, употребляется разными моделями. Скорость обращения данных тоже критична, особенно для систем, взаимодействующих с пользователями в режиме реального времени. При возросшей сложности не обойтись без специализированных инструментов, например Feature Store. Однако случается, что все решения на рынке не годятся по тем или иным причинам. Тогда приходится рассчитывать исключительно на свои силы. Рассказываем, как в Купере внедрили Feast, хранилище признаков (Feature Store) с открытым исходным кодом. После прочтения вы познакомитесь с инструментом и сможете решить, подходит ли Feast для коммерческого использования. Подробности под катом!

habr.com/ru/companies/selectel

#selecte #купер #ml #mlops #mlечный_путь #feature_store #машинное_обучение #bigdata

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst