#specialfunctions

Khurram Wadee ✅mkwadee@mastodon.org.uk
2025-06-13

A few days back, I posted some #AnimatedGifs of the exact solution for a large-amplitude undamped, unforced #Pendulum. I then thought to complete the study to include the case when it has been fed enough #energy to allow it just to undergo #FullRotations, rather than just #oscillations. Well, it turns out that it is “a bit more complicated than I first expected” but I finally managed it.

#Mathematics #AppliedMathematics #SpecialFunctions #DynamicalSystems #NonlinearPhenomena

Christos Argyropoulos MD, PhDChristosArgyrop@mstdn.science
2024-04-03

@Perl One of the things I learned tonight is that the #specialfunctions and #statisticaldistributions library beating inside #rstats is available as a standalone version. While this speaks volumes of the portability of #clang, it also creates opportunities for transporting a significant chunk of R's functionalities into other languages, e.g. by writing swig interfaces. This may be an interesting #perl #pdl project

from "Definite integration using the generalized hypergeometric functions" by Ioannis Dimitrios Avgoustis (1977)

dspace.mit.edu/handle/1721.1/1

#math #specialfunctions

2024-01-12

Power series for the cotangent and cosecant functions can be expressed rather compactly in terms of the Riemann zeta and Dirichlet eta functions:

\[ \displaystyle \cot z = -2 \sum_{k=0}^\infty \frac{ \zeta(2k) }{ \pi^{2k} } z^{2k-1} \hspace{5em}
\csc z = 2 \sum_{k=0}^\infty \frac{ \eta(2k) }{ \pi^{2k} } z^{2k-1} \]

Since I haven't seen these expressed quite this way before, I thought I'd share it. More information is available here:

analyticphysics.com/Special%20

#math #specialfunctions #trig #trigonometry #zeta #eta

from "On the Specialness of Special Functions (The Nonrandom Effusions of the Divine Mathematician)" by R.W. Batterman (2007)

philsci-archive.pitt.edu/2629/

#math #specialfunctions

from "Delay differential equations via the matrix Lambert W function and bifurcation analysis: application to machine tool chatter" by Sun Yi, Patrick W. Nelson, and A. Galip Ulsoy (2007)

pubmed.ncbi.nlm.nih.gov/176589

#math #delaydifferentialequations #specialfunctions #lambertw

from "Special Functions of Mathematical Physics and Chemistry" by Ian N Sneddon (1956)

#math #specialfunctions #physics #chemistry

2023-09-18

The unproved Riemann hypothesis states that the nontrivial zeros of the Riemann zeta function occur only on the critical line \( z = \frac12 + i y \). While it is not difficult to understand why these zeros can only occur inside the critical strip \( 0 < \operatorname{Re} z < 1 \), the restriction to the critical line is spooky cool.

With an implementation of the zeta function in #JavaScript one has a proof near the origin via #visualization. The real part of the function is blue, imaginary red:

mathcell.org/www/riemann-zeta-

Manipulating the imaginary part of the argument along the critical strip shows immediately that zeros only occur on the critical line for an imaginary part of approximately

±14.13, ±21.02, ±25.01, ±30.42, ±32.94, ±37.59, ±40.92, ±43.33, ±48.01, ±49.77

For more context and the relation to the Riemann xi function, visit

analyticphysics.com/Special%20

#SpecialFunctions #Riemann #zeta

From "The analytic continuation of the Gaussian hypergeometric function 2F1(a,b;c;z) for arbitrary parameters" by W. Becken and P. Schmelcher (2000)

core.ac.uk/download/pdf/821080

#math #specialfunctions

2023-07-24

If you want to do #QuantumMechanics in #HigherDimensions then you need to know about associated Gegenbauer polynomials. Since there is no good reference on the web for these, I put together a presentation of Legendre, Gegenbauer and Jacobi polynomials to show how to derive their series expansions, Rodrigues formulas and differential equations:

analyticphysics.com/Special%20

Lots of tedious detail that ultimately simplifies nicely. Suspect I'm missing something important here...

#Physics #SpecialFunctions

2022-12-05

Any special function specialists around here? Are there good numerical methods to evaluate bivariate (hyper2d) hypergeometric functions/Kampé de Fériet functions besides evaluating the inner hypergeometric function and summing up? #numerics #numericalmethods #specialfunctions

黒木玄 Gen Kurokigenkuroki@mathtod.online
2017-07-29

#julialang #specialfunctions

github.com/JuliaLang/julia/iss

の stevengj commented on 31 Jan のコメントがすごい!

Juliaで複素函数版の指数積分函数を実装したら、scipyで使われているFORTRANで書かれた指数積分複素函数よりも5~6倍速かったと書いてある!

そのコメントから張られているリンク先が以下。

github.com/stevengj/18S096-iap

github.com/stevengj/18S096-iap

これは後で確認してみよう。

黒木玄 Gen Kurokigenkuroki@mathtod.online
2017-07-29

#julialang #specialfunctions #mathNT #primenumbertheorem

github.com/JuliaLang/julia/iss

でJuliaに指数積分函数が見当たらないという問題が話題になっていました。

私も、素数定理のグラフを描こうと思って、対数積分函数を探して見付からないことで、指数積分函数も見つからないことに気付いた。

対数積分函数 Li(x) と指数積分函数 Ei(x) の関係は Li(x)=Ei(log(x)).

Li(x) が x 以下の素数の個数と同じオーダーで大きくなというのが素数定理。

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst