#%D0%B2%D1%8B%D0%B1%D0%BE%D1%80_%D0%B0%D1%80%D1%85%D0%B8%D1%82%D0%B5%D0%BA%D1%82%D1%83%D1%80%D1%8B_%D0%B4%D0%B0%D0%BD%D0%BD%D1%8B%D1%85

2025-08-15

[Перевод] Выбираем архитектуру данных для компании: руководство от дата-инженера

Сегодня данные превратились в один из главных активов бизнеса. От того, как компания их использует, зависит и качество принимаемых решений, и эффективность процессов, и шансы обойти конкурентов. Эпоха, когда бизнесу достаточно было просто владеть данными, осталась в прошлом. Теперь их нужно интерпретировать, делать легкодоступными, встраивать системы, поддерживающие принятие решений. При этом объемы данных растут, их форматы множатся, а сценарии использования — усложняются. Чтобы справиться с этим, компании переходят на более гибкие подходы к управлению данными. В этой статье разберем четыре наиболее популярные архитектуры: Data Warehouse, Data Lake, Data Lakehouse и Data Mesh. Обсудим, чем они отличаются и какую выбрать под конкретные задачи.

habr.com/ru/companies/magnus-t

#хранилища_данных #архитектура_данных #озеро_данных #data_lake #data_lakehouse #data_mesh #архитектура_медальона #инжиниринг_данных #выбор_архитектуры_данных

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst