#HypostaticAbstraction

2025-01-16

Interpreter and Interpretant • Selection 7
inquiryintoinquiry.com/2025/01

Learning —

Rules in a knowledge base, as far as their effective content goes, can be obtained by any mode of inference. For example, consider a proposition of the following form.

• B ⇒ A, Just Before it rains, the Air is cool.

Such a proposition is usually induced from a consideration of many past events. The inductive inference may be observed to fit the following pattern.

• Case : C ⇒ B, In Certain events, it is just Before it rains.
• Fact : C ⇒ A, In Certain events, the Air is cool.
────────────────────────────────────
• Rule : B ⇒ A, Just Before it rains, the Air is cool.

However, the same proposition could also be abduced as an explanation of a singular occurrence or deduced as a conclusion of a prior theory.

References —

Awbrey, J.L., and Awbrey, S.M. (1995), “Interpretation as Action : The Risk of Inquiry”, Inquiry : Critical Thinking Across the Disciplines 15(1), 40–52.
pdcnet.org/inquiryct/content/i
academia.edu/57812482/Interpre

Dewey, J. (1910), How We Think, D.C. Heath, Boston, MA. Reprinted (1991), Prometheus Books, Buffalo, NY.
gutenberg.org/files/37423/3742

Resources —

Survey of Abduction, Deduction, Induction, Analogy, Inquiry
inquiryintoinquiry.com/2024/02

Survey of Semiotics, Semiosis, Sign Relations
inquiryintoinquiry.com/2024/01

#Peirce #Logic #Semiotics #SignRelations #TriadicRelations
#Interpretation #Interpreter #Interpretant #Hermeneutics
#JohnDewey #Inquiry #Abduction #Deduction #Induction
#Abstraction #HypostaticAbstraction #Reflection

2025-01-14

Interpreter and Interpretant • Selection 6
inquiryintoinquiry.com/2025/01

Inquiry and Induction —

To understand the bearing of inductive reasoning on the closing phases of inquiry there are a couple of observations we should make.

• Smaller inquiries are typically woven into larger inquiries, whether the whole pattern of inquiry is carried on by a single agent or by a complex community.

• There are several ways particular instances of inquiry are related to ongoing inquiries at larger scales. Three modes of interaction between component inquiries and compound inquiries may be described under the headings of Learning, Transfer, and Testing of Rules.

#Peirce #Logic #Semiotics #SignRelations #TriadicRelations
#Interpretation #Interpreter #Interpretant #Hermeneutics
#JohnDewey #Inquiry #Abduction #Deduction #Induction
#Abstraction #HypostaticAbstraction #Reflection

2025-01-12

Interpreter and Interpretant • Selection 5
inquiryintoinquiry.com/2025/01

Inquiry and Inference —

If we follow Dewey's “Sign of Rain” story far enough to consider the import of thought for action, we realize the subsequent conduct of the interpreter, progressing up through the natural conclusion of the episode — the quickening steps, the seeking of shelter in time to escape the rain — all those acts amount to a series of further interpretants for the initially recognized signs of rain and the first impressions of the actual case. Just as critical reflection develops the positive and negative signs which gather about an idea, pragmatic interpretation explores the consequential and contrasting actions which give effective and testable meaning to a person's belief in it.

#Peirce #Logic #Semiotics #SignRelations #TriadicRelations
#Interpretation #Interpreter #Interpretant #Hermeneutics
#JohnDewey #Inquiry #Abduction #Deduction #Induction
#Abstraction #HypostaticAbstraction #Reflection

2025-01-10

Interpreter and Interpretant • Selection 4
inquiryintoinquiry.com/2025/01

Interpretation and Inquiry —

To illustrate the role of sign relations in inquiry we begin with Dewey's elegant and simple example of reflective thinking in everyday life.

❝A man is walking on a warm day. The sky was clear the last time he observed it; but presently he notes, while occupied primarily with other things, that the air is cooler. It occurs to him that it is probably going to rain; looking up, he sees a dark cloud between him and the sun, and he then quickens his steps. What, if anything, in such a situation can be called thought? Neither the act of walking nor the noting of the cold is a thought. Walking is one direction of activity; looking and noting are other modes of activity. The likelihood that it will rain is, however, something suggested. The pedestrian feels the cold; he thinks of clouds and a coming shower.❞ (John Dewey, How We Think, 6–7).

#Peirce #Logic #Semiotics #Semiosis #SignRelations #TriadicRelations
#Cybersemiotics #Interpreter #Interpretant #Hermeneutics #Hermenaut
#JohnDewey #HowWeThink #Inquiry #Abduction #Deduction #Induction
#Abstraction #HypostaticAbstraction #Reflection #Interpretation

2025-01-09

Reference —

Peirce, C.S. (1866), “The Logic of Science, or, Induction and Hypothesis”, Lowell Lectures of 1866, pp. 357–504 in Writings of Charles S. Peirce : A Chronological Edition, Volume 1, 1857–1866, Peirce Edition Project, Indiana University Press, Bloomington, IN, 1982.

Resources —

Hypostatic Abstraction
inquiryintoinquiry.com/2008/08

Survey of Semiotics, Semiosis, Sign Relations
inquiryintoinquiry.com/2024/01

#Peirce #Logic #Semiotics #Semiosis #SignRelations #TriadicRelations
#Cybersemiotics #Interpreter #Interpretant #Hermeneutics #Hermenaut
#Abstraction #HypostaticAbstraction #SopToCerberus #Interpretation

2025-01-09

Interpreter and Interpretant • Selection 3
inquiryintoinquiry.com/2025/01

The following selection from Peirce's “Lowell Lectures on the Logic of Science” (1866) lays out in detail his “metaphorical argument” for the relationship between interpreters and interpretant signs.

#Peirce #Logic #Semiotics #Semiosis #SignRelations #TriadicRelations
#Cybersemiotics #Interpreter #Interpretant #Hermeneutics #Hermenaut
#Abstraction #HypostaticAbstraction #SopToCerberus #Interpretation

2025-01-08

Interpreter and Interpretant • Selection 2
inquiryintoinquiry.com/2025/01

A idea of what Peirce means by an Interpretant and the part it plays in a triadic sign relation is given by the following passage.

❝It is clearly indispensable to start with an accurate and broad analysis of the nature of a Sign. I define a Sign as anything which is so determined by something else, called its Object, and so determines an effect upon a person, which effect I call its Interpretant, that the latter is thereby mediately determined by the former. My insertion of “upon a person” is a sop to Cerberus, because I despair of making my own broader conception understood.❞ (Peirce 1908, Selected Writings, p. 404).

According to his custom of clarifying ideas in terms of their effects, Peirce tells us what a sign is in terms of what it does, the effect it brings to bear on a “person”. That effect he calls the interpretant of the sign. And what of that person? Peirce finesses that question for the moment, resorting to a “Sop to Cerberus”, in other words, a rhetorical gambit used to side‑step a persistent difficulty of exposition. In doing so, Peirce invokes the hypostatic abstraction of a “person” who conducts the movement of signs and embodies the ongoing process of semiosis.

Reference —

Peirce, C.S. (1908), “Letters to Lady Welby”, Chapter 24, pp. 380–432 in Charles S. Peirce : Selected Writings (Values in a Universe of Chance), Edited with Introduction and Notes by Philip P. Wiener, Dover Publications, New York, NY, 1966.

#Peirce #Logic #Semiotics #Semiosis #SignRelations #TriadicRelations
#Cybersemiotics #Interpreter #Interpretant #Hermeneutics #Hermenaut
#Abstraction #HypostaticAbstraction #Interpretation

2024-05-27

Precursors Of Category Theory • 3
inquiryintoinquiry.com/2024/05

❝Act only according to that maxim by which you can at the same time will that it should become a universal law.❞

— Immanuel Kant (1785)

C.S. Peirce • “On a New List of Categories” (1867)

❝§1. This paper is based upon the theory already established, that the function of conceptions is to reduce the manifold of sensuous impressions to unity, and that the validity of a conception consists in the impossibility of reducing the content of consciousness to unity without the introduction of it.❞ (CP 1.545).

❝§2. This theory gives rise to a conception of gradation among those conceptions which are universal. For one such conception may unite the manifold of sense and yet another may be required to unite the conception and the manifold to which it is applied; and so on.❞ (CP 1.546).

Cued by Kant's idea regarding the function of concepts in general, Peirce locates his categories on the highest levels of abstraction able to provide a meaningful measure of traction in practice. Whether successive grades of conceptions converge to an absolute unity or not is a question to be pursued as inquiry progresses and need not be answered in order to begin.

Resources —

Precursors Of Category Theory
oeis.org/wiki/Precursors_Of_Ca

Propositions As Types Analogy
oeis.org/wiki/Propositions_As_

Survey of Precursors Of Category Theory
inquiryintoinquiry.com/2024/05

#Aristotle #Peirce #Kant #Carnap #Hilbert #Ackermann #SaundersMacLane
#Abstraction #Analogy #CategoryTheory #Diagrams #FoundationsOfMathematics
#FunctionalLogic #RelationTheory #ContinuousPredicate #HypostaticAbstraction
#CategoryTheory #PeircesCategories #PropositionsAsTypes #TypeTheory #Universals

2024-05-26

Precursors Of Category Theory • 2.3
inquiryintoinquiry.com/2024/05

In the logic of Aristotle categories are adjuncts to reasoning whose function is to resolve ambiguities and thus to prepare equivocal signs, otherwise recalcitrant to being ruled by logic, for the application of logical laws. The example of ζωον illustrates the fact that we don't need categories to “make” generalizations so much as to “control” generalizations, to reign in abstractions and analogies which have been stretched too far.

References —

• Aristotle, “The Categories”, Harold P. Cooke (trans.), pp. 1–109 in Aristotle, Volume 1, Loeb Classical Library, William Heinemann, London, UK, 1938.

• Karpeles, Eric (2008), Paintings in Proust, Thames and Hudson, London, UK.

Resources —

Precursors Of Category Theory
oeis.org/wiki/Precursors_Of_Ca

Propositions As Types Analogy
oeis.org/wiki/Propositions_As_

Survey of Precursors Of Category Theory
inquiryintoinquiry.com/2024/05

#Aristotle #Peirce #Kant #Carnap #Hilbert #Ackermann #SaundersMacLane
#Abstraction #Analogy #CategoryTheory #Diagrams #FoundationsOfMathematics
#FunctionalLogic #RelationTheory #ContinuousPredicate #HypostaticAbstraction
#CategoryTheory #PeircesCategories #PropositionsAsTypes #TypeTheory #Universals

2024-05-26

Precursors Of Category Theory • 2.2
inquiryintoinquiry.com/2024/05

Aristotle —

❝Things are equivocally named, when they have the name only in common, the definition (or statement of essence) corresponding with the name being different. For instance, while a man and a portrait can properly both be called animals (ζωον), these are equivocally named. For they have the name only in common, the definitions (or statements of essence) corresponding with the name being different. For if you are asked to define what the being an animal means in the case of the man and the portrait, you give in either case a definition appropriate to that case alone.

❝Things are univocally named, when not only they bear the same name but the name means the same in each case — has the same definition corresponding. Thus a man and an ox are called animals. The name is the same in both cases; so also the statement of essence. For if you are asked what is meant by their both of them being called animals, you give that particular name in both cases the same definition.❞ (Aristotle, Categories, 1.1a1–12).

Translator's Note. ❝Ζωον in Greek had two meanings, that is to say, living creature, and, secondly, a figure or image in painting, embroidery, sculpture. We have no ambiguous noun. However, we use the word ‘living’ of portraits to mean ‘true to life’.❞

#Aristotle #Peirce #Kant #Carnap #Hilbert #Ackermann #SaundersMacLane
#Abstraction #Analogy #CategoryTheory #Diagrams #FoundationsOfMathematics
#FunctionalLogic #RelationTheory #ContinuousPredicate #HypostaticAbstraction
#CategoryTheory #PeircesCategories #PropositionsAsTypes #TypeTheory #Universals

2024-05-26

Precursors Of Category Theory • 2.1
inquiryintoinquiry.com/2024/05

❝Thanks to art, instead of seeing one world only, our own, we see that world multiply itself and we have at our disposal as many worlds as there are original artists …❞

— Marcel Proust

When it comes to looking for the continuities of the category concept across different systems and systematizers, we don't expect to find their kinship in the names or numbers of categories, since those are legion and their divisions deployed on widely different planes of abstraction, but in their common function.

#Aristotle #Peirce #Kant #Carnap #Hilbert #Ackermann #SaundersMacLane
#Abstraction #Analogy #CategoryTheory #Diagrams #FoundationsOfMathematics
#FunctionalLogic #RelationTheory #ContinuousPredicate #HypostaticAbstraction
#CategoryTheory #PeircesCategories #PropositionsAsTypes #TypeTheory #Universals

2024-05-25

Precursors Of Category Theory • 1
inquiryintoinquiry.com/2024/05

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice. My notes on the project are still very rough and incomplete but I find myself returning to them from time to time.

Preamble —

❝Now the discovery of ideas as general as these is chiefly the willingness to make a brash or speculative abstraction, in this case supported by the pleasure of purloining words from the philosophers: “Category” from Aristotle and Kant, “Functor” from Carnap (“Logische Syntax der Sprache”), and “natural transformation” from then current informal parlance.❞

— Saunders Mac Lane • “Categories for the Working Mathematician”

Resources —

Precursors Of Category Theory
oeis.org/wiki/Precursors_Of_Ca

Propositions As Types Analogy
oeis.org/wiki/Propositions_As_

Survey of Precursors Of Category Theory
inquiryintoinquiry.com/2024/05

#Aristotle #Peirce #Kant #Carnap #Hilbert #Ackermann #SaundersMacLane
#Abstraction #Analogy #CategoryTheory #Diagrams #FoundationsOfMathematics
#FunctionalLogic #RelationTheory #ContinuousPredicate #HypostaticAbstraction
#CategoryTheory #PeircesCategories #PropositionsAsTypes #TypeTheory #Universals

2024-05-24

Survey of Precursors Of Category Theory • 5
inquiryintoinquiry.com/2024/05

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice. A Survey of resources on the topic is given below, still very rough and incomplete, but perhaps a few will find it of use.

Background —

Precursors Of Category Theory
oeis.org/wiki/Precursors_Of_Ca

Propositions As Types Analogy
oeis.org/wiki/Propositions_As_

Blog Series —

Notes On Categories
inquiryintoinquiry.com/2013/02

Precursors Of Category Theory
1. inquiryintoinquiry.com/2013/12
2. inquiryintoinquiry.com/2013/12
3. inquiryintoinquiry.com/2014/01

Precursors Of Category Theory • Discussion
1. inquiryintoinquiry.com/2020/09
2. inquiryintoinquiry.com/2020/09
3. inquiryintoinquiry.com/2020/09

Categories à la Peirce —

C.S. Peirce • A Guess at the Riddle
inquiryintoinquiry.com/2012/03

Peirce's Categories
1. inquiryintoinquiry.com/2015/10
2. inquiryintoinquiry.com/2015/10
3. inquiryintoinquiry.com/2015/11
•••
19. inquiryintoinquiry.com/2020/05
20. inquiryintoinquiry.com/2020/05
21. inquiryintoinquiry.com/2020/06

C.S. Peirce and Category Theory
1. inquiryintoinquiry.com/2021/06
2. inquiryintoinquiry.com/2021/06
3. inquiryintoinquiry.com/2021/06
4. inquiryintoinquiry.com/2021/06
5. inquiryintoinquiry.com/2021/06
6. inquiryintoinquiry.com/2021/06
7. inquiryintoinquiry.com/2021/07
8. inquiryintoinquiry.com/2021/07

#Aristotle #Peirce #Kant #Carnap #Hilbert #Ackermann #SaundersMacLane
#Abstraction #Analogy #CategoryTheory #Diagrams #FoundationsOfMathematics
#FunctionalLogic #RelationTheory #ContinuousPredicate #HypostaticAbstraction
#CategoryTheory #PeircesCategories #PropositionsAsTypes #TypeTheory #Universals

2024-03-23

Survey of Relation Theory
inquiryintoinquiry.com/2024/03

In the present Survey of blog and wiki resources for Relation Theory, relations are viewed from the perspective of combinatorics, in other words, as a topic in discrete mathematics, with special attention to finite structures and concrete set‑theoretic constructions, many of which arise quite naturally in applications. This approach to relation theory is distinct from, though closely related to, its study from the perspectives of abstract algebra on the one hand and formal logic on the other.

Please follow the above link for the full set of resources.
A few basic articles are linked below.

Relation Theory
oeis.org/wiki/Relation_theory

Relation Composition
oeis.org/wiki/Relation_composi

Relation Construction
oeis.org/wiki/Relation_constru

Relation Reduction
oeis.org/wiki/Relation_reducti

Relative Term
oeis.org/wiki/Relative_term

Sign Relation
oeis.org/wiki/Sign_relation

Triadic Relation
oeis.org/wiki/Triadic_relation

Six Ways of Looking at a Triadic Relation ⌬ 1
inquiryintoinquiry.com/2015/02

Mathematical Demonstration and the Doctrine of Individuals
inquiryintoinquiry.com/2023/05
inquiryintoinquiry.com/2023/05

Peirce's 1870 “Logic of Relatives” —
inquiryintoinquiry.com/2019/09
inquiryintoinquiry.com/2014/01

#Peirce #Logic #LogicOfRelatives #RelationTheory #RelativeTerm
#MonadicRelation #DyadicRelation #TriadicRelation #SignRelation
#PredicateCalculus #ContinuousPredicate #HypostaticAbstraction
#RelationComposition #RelationConstruction #RelationReduction

2024-03-05

@dpiponi @christianp

Reification is not just abstraction but #HypostaticAbstraction, also called Subjectal Abstraction. That may be what's involved in the continuation example, not sure, but the converse process of coding is properly called Symbolization.

2024-02-11

@NicoleCRust @mieronen

The term of art is Hypostatic Abstraction —

inquiryintoinquiry.com/2008/08

It's easy to lampoon, as Molière famously did, but it's actually unavoidable in any science, hard or soft.

The trick, as C.S. Peirce observed, is how to do it right.

#HypostaticAbstraction

2024-02-02

Interpreter and Interpretant • Discussion 1
inquiryintoinquiry.com/2024/02

Re: Conceptual Graphs
lists.cs.uni-kassel.de/hyperki

Helmut Raulien:
❝I find it a bit problematic to say, that the sign determines the interpretant, because the sign doesn't infer, it is the interpreter, who does the inference. But ok, I guess we might say, that Peirce prescinds the semiosis from the interpreter, so, ok, the flow of determination goes from the sign to the interpretant, because it is the interpreter, who receives the sign, and then forms the interpretant […]❞

Helmut,

Thanks for this. Something about the way you expressed the question led me to think of a new angle on it.

What makes an interpretant is fairly simple, at least, here's the catch, once you have the appropriate mathematical framework in place — An interpretant is whatever appears in the third place of a sign‑relational triple (o, s, i).

What makes an interpreter is more complex. I'll take that up as I get more time.

Resources —

Pragmatic Maxim
inquiryintoinquiry.com/2023/08

Hypostatic Abstraction
inquiryintoinquiry.com/2008/08

#Peirce #Logic #Semiotics #SignRelations #TriadicRelations
#Inference #Information #Inquiry #Interpreter #Interpretant
#Abstraction #HypostaticAbstraction #PrescissiveAbstraction
#Pragma #Pragmata #Pragmatism #PragmaticMaxim #Determination

2024-01-28

Interpreter and Interpretant • Selection 2
inquiryintoinquiry.com/2024/01

In the next passage up for review the hypostatic abstraction of a person to conduct the movement of signs is described by Peirce as a Sop to Cerberus, a rhetorical gambit set to side‑step a persistent difficulty of exposition.

❝It is clearly indispensable to start with an accurate and broad analysis of the nature of a Sign. I define a Sign as anything which is so determined by something else, called its Object, and so determines an effect upon a person, which effect I call its Interpretant, that the latter is thereby mediately determined by the former. My insertion of “upon a person” is a sop to Cerberus, because I despair of making my own broader conception understood.❞ (Peirce 1908, Selected Writings, p. 404).

Reference —

Peirce, C.S. (1908), “Letters to Lady Welby”, Chapter 24, pp. 380–432 in Charles S. Peirce : Selected Writings (Values in a Universe of Chance), Edited with Introduction and Notes by Philip P. Wiener, Dover Publications, New York, NY, 1966.

Resource —

Hypostatic Abstraction
inquiryintoinquiry.com/2008/08

#Peirce #Logic #Semiotics #SignRelations #TriadicRelations
#Aristotle #Interpretation #Hermeneutics #InterpretantSign
#Abstraction #HypostaticAbstraction #SopToCerberus #Pragma

2023-08-01

Survey of Precursors Of Category Theory • 4
inquiryintoinquiry.com/2023/08

A few years ago I began a sketch on the “Precursors of Category Theory”, tracing the continuities of the category concept from Aristotle, to Kant and Peirce, through Hilbert and Ackermann, to contemporary mathematical practice. A Survey of resources on the topic is given below, still very rough and incomplete, but perhaps a few will find it of use.

Background —

Precursors Of Category Theory
oeis.org/wiki/Precursors_Of_Ca

Propositions As Types Analogy
oeis.org/wiki/Propositions_As_

Blog Series —

Notes On Categories
inquiryintoinquiry.com/2013/02

Precursors Of Category Theory
1. inquiryintoinquiry.com/2013/12
2. inquiryintoinquiry.com/2013/12
3. inquiryintoinquiry.com/2014/01

Precursors Of Category Theory • Discussion
1. inquiryintoinquiry.com/2020/09
2. inquiryintoinquiry.com/2020/09
3. inquiryintoinquiry.com/2020/09

Categories à la Peirce —

C.S. Peirce • A Guess at the Riddle
inquiryintoinquiry.com/2012/03

Peirce's Categories
1. inquiryintoinquiry.com/2015/10
2. inquiryintoinquiry.com/2015/10
3. inquiryintoinquiry.com/2015/11
•••
19. inquiryintoinquiry.com/2020/05
20. inquiryintoinquiry.com/2020/05
21. inquiryintoinquiry.com/2020/06

#Aristotle #Peirce #Kant #Carnap #Hilbert #Ackermann #SaundersMacLane
#Abstraction #Analogy #CategoryTheory #Diagrams #FoundationsOfMathematics
#FunctionalLogic #RelationTheory #ContinuousPredicate #HypostaticAbstraction
#CategoryTheory #PeircesCategories #PropositionsAsTypes #TypeTheory #Universals

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst