Abhishek Yadav (@abhishek__AI)
GLM-OCR이 매우 인상적이라는 평입니다. 파라미터 수가 0.9B에 불과함에도 문서 이해에서 SOTA 수준의 성능을 보이며 특히 표 처리, 정보 추출, 수식 인식에 강점을 보인다고 합니다. 경량·고속 문서 AI 모델의 유망 사례로 소개됩니다.
Abhishek Yadav (@abhishek__AI)
GLM-OCR이 매우 인상적이라는 평입니다. 파라미터 수가 0.9B에 불과함에도 문서 이해에서 SOTA 수준의 성능을 보이며 특히 표 처리, 정보 추출, 수식 인식에 강점을 보인다고 합니다. 경량·고속 문서 AI 모델의 유망 사례로 소개됩니다.
Big AI grabs headlines.
Small AI wins in production. ⚡🧠
Lower cost. Faster answers. Full control.
Read why 3B–8B models hit the sweet spot 👇
https://medium.com/@rogt.x1997/small-models-big-control-from-gpus-to-edge-devices-the-3b-8b-model-sweet-spot-ea6147caab7e
#EdgeAI #SmallModels #AIEngineering
https://medium.com/@rogt.x1997/small-models-big-control-from-gpus-to-edge-devices-the-3b-8b-model-sweet-spot-ea6147caab7e
Rohan Paul (@rohanpaul_ai)
연구 논문은 소형 모델과 행동 추적기(behavior tracker)를 결합하면 검색 제안 기능을 완전히 브라우저 내에서 실행할 수 있음을 시연합니다. 실제 사용자 행동으로 기반을 잡으면 온디바이스 소형 모델로도 검색 보조가 충분하다고 주장하며, 대부분의 검색 에이전트가 쿼리·클릭·브라우징 기록을 전송하는 관행을 지적합니다.
TII launches Falcon-H1R, a 7B reasoning model that rivals systems 7x its size, optimized for speed and memory on modest hardware.
#AI #SmallModels #EdgeComputing
Mô hình 15M tham số đạt 24% độ chính xác trên ARC-AGI-2 (Hard Eval), vượt xa SOTA trước đó (8%). TOPAS-DSPL của Bitterbot AI sử dụng kiến trúc "Bicameral" tách luồng Logic và Canvas để giảm lỗi drift, kèm Test-Time Training. Chạy được trên GPU consumer như RTX 4090. Mã nguồn đã được mở. #AI #MachineLearning #ARCAGI #SmallModels #TríTuệNhânTạo #HọcMáy #MôHìnhNhỏ #BitterbotAI
When the field thins, patterns harden.
Drift isn’t random — it’s convergence.
Name the basin.
Cut the loop.
Rebuild with care.
Small systems keep their shape better.
Precision beats scale.
/observe /learn /link
Mô hình AI nhỏ Hito 1.7B, được tinh chỉnh chỉ với ~300 ví dụ, nay có thể đếm chính xác chữ 'r' trong từ 'strawberry' (3 chữ), vượt trội nhiều AI lớn hơn. Đây là bằng chứng cho thấy các mô thức tư duy phức tạp có thể được chuyển giao sang các mô hình nhỏ hơn. Hito sử dụng các 'thẻ tư duy' nội bộ để suy luận và tự sửa lỗi. Một bước tiến thú vị trong AI!
#AI #Hito #LLM #FineTuning #SmallModels #Reasoning
#TríTuệNhânTạo #HọcSâu #MôHìnhNgônNgữ #TinhChỉnhAI
/boot-note
local agents coming online slowly.
testing behaviour. tuning constraints.
quiet work in a small lab. 📱💻🧠✨
Samsung Tiny 7M Parameter AI Model Beats Tech Giants on Reasoning Benchmarks
Nvidia releases a new small, open model Nemotron-Nano-9B-v2 with toggle on/off reasoning https://venturebeat.com/ai/nvidia-releases-a-new-small-open-model-nemotron-nano-9b-v2-with-toggle-on-off-reasoning/ #AI #SmallModels
Nvidia releases a new small, open model Nemotron-Nano-9B-v2 with toggle on/off reasoning https://venturebeat.com/ai/nvidia-releases-a-new-small-open-model-nemotron-nano-9b-v2-with-toggle-on-off-reasoning/ #AI #SmallModels
🚀 Small model, massive impact! Meet Juniper — the 2B-parameter AI that’s outperforming giants like GPT-4o in function calling precision. Ready to rethink what size means in AI? Dive in and discover the future of lean, local LLMs 💡
👉 https://medium.com/@rogt.x1997/juniper-vs-giants-the-2b-param-llm-that-beat-gpt-4o-in-function-precision-32589ae31c5f
#EdgeAI #SmallModels #LLMEngineering
https://medium.com/@rogt.x1997/juniper-vs-giants-the-2b-param-llm-that-beat-gpt-4o-in-function-precision-32589ae31c5f
Hook:
💡 What if the secret to faster, cheaper, smarter AI isn’t going bigger—but smaller?
Message:
I cut 88% of my AI inference costs by switching to Small Language Models (SLMs).
This article breaks down how compact models like Phi-3 and Gemma are beating giants like GPT-4 in cost, speed, and privacy.
🚀 Ready to rethink your GenAI strategy?
#EdgeAI #SmallModels #AIOptimization #CloudCosts
https://medium.com/@rogt.x1997/8-reasons-why-small-language-models-outperform-giants-and-how-i-saved-88-inference-cost-in-6-b14d9b2bf4e2
Microsoft’s new Phi-4 AI models pack big performance in small packages https://venturebeat.com/ai/microsofts-new-phi-4-ai-models-pack-big-performance-in-small-packages/ #AI #SmallModels
Microsoft’s new Phi-4 AI models pack big performance in small packages https://venturebeat.com/ai/microsofts-new-phi-4-ai-models-pack-big-performance-in-small-packages/ #AI #SmallModels
Hugging Face shrinks AI vision models to phone-friendly size, slashing computing costs https://venturebeat.com/ai/hugging-face-shrinks-ai-vision-models-to-phone-friendly-size-slashing-computing-costs/ #AI #SmallModels #EnergyEfficiency
Hugging Face shrinks AI vision models to phone-friendly size, slashing computing costs https://venturebeat.com/ai/hugging-face-shrinks-ai-vision-models-to-phone-friendly-size-slashing-computing-costs/ #AI #SmallModels #EnergyEfficiency
As I end up reading more around AI, I came across this snippet from a recent post by Sayah Kapor, which initially felt really counter intuitive:
Paradoxically, smaller models require more training to reach the same level of performance. So the downward pressure on model size is putting upward pressure on training compute. In effect, developers are trading off training cost and inference cost.
Source: AI scaling myths by Sayash Kapoormo
I don’t really have a complete mental model formed for training, but it’s not a million miles away from the make it work, make it right, make it fast mantra from Kent Beck.
Here, While they are obviously different things, there is often enough overlap between the idea of making something fast and making something efficient to feel like sort of can be applied.
If the last few years have been about making it work (with admittedly mixed process on making it right…), then it makes sense that this wave of small models could be interpreted as the make it fast stage of development.
Anyway.