#autonomousboat

2022-04-10

Robotic Boat Rides High On PVC Pipe Pontoons

If you want to build your own rover, there's plenty of cheap RC trucks out there that will provide a serviceable chassis to work with. Looking to go airborne with a custom drone? Thanks to the immense popularity of first-person view (FPV) flying, you'll find a nearly infinite variety of affordable fixed wing and quadcopter platforms out there to chose from. But when it comes to robotic watercraft, the turn-key options aren't nearly as plentiful; the toys are all too small, and the commercial options are priced for entities that have an R&D budget to burn. For amateur aquatic explorers, creativity is the name of the game.

Take for example this impressive vessel built by [wesgood]. With a 3D printed electronics enclosure mounted to a pair of pontoons made of cheap 4-inch PVC pipe available from the hardware store, it provides a stable platform without breaking the bank. Commercial jet drive units built into the printed tail caps for the pipes provide propulsion, and allow the craft to be steered through differential thrust. Without rudders or exposed propellers, this design is particularly well-suited for operating in shallow waters.

A removable electronics tray allows for easy access.

Perched high above the water, the electronics box contains a Raspberry Pi 2, BU353 USB GPS receiver, and a Arduino Mega 2560 paired with a custom PCB that offers up convenient ports to connect a dual-channel Cytron 3 amp motor driver and Adafruit BNO055 9-DOF IMU. Power is provided by two 6,000 mAh LiPo batteries mounted low in the pontoons, and a matching pair of Adafruit current/voltage sensors are used to keep track of the energy budget. A small USB WiFi dongle with an external antenna plugged into the Pi offers up a WiFi network that [wesgood] can connect to with an iPad for control.

If the control software for the craft looks particularly well-polished, it's probably because [wesgood] just so happens to be a professional developer with a focus on mobile applications. While we're a bit skeptical of using WiFi for a critical long-distance link, we can't deny that the iPad allows for a very slick interface. In addition to showing the status of the craft's various systems, it lets the user either take manual control or place waypoints for autonomous navigation -- although it sounds like that last feature is only partially implemented right now.

We love this design, and are eager to see more as the project develops. Recently [wesgood] experimented with payloads that can be suspended from the bottom of the electronics box, specifically a sonar module for performing bathymetric observations. There's considerable interest in crowd sourced depth maps for inland waterways, and a robotic craft that can reliably chart these areas autonomously is certainly a step up from having to collect the data manually.

#robotshacks #autonomousboat #depthmapping #jetdrive #pontoon

image
2021-09-24

Open Source Autopilot For Cheap Trolling Motors

Quiet electric trolling motors are great for gliding into your favorite fishing spot but require constant correction if wind and water currents are at play. As an alternative to expensive commercial GPS-guided trolling motors, [AlexAsplund] created Vanchor, an open source system for adding autopilot to a cheap trolling motor.

To autonomously control an off-the-shelf trolling motor, [Alex] designed a 3D printed steering unit powered by a stepper motor to attach to the original transom mount over the motor's vertical shaft. A collar screwed to the shaft locks the motor into the steering unit when the motor is lowered. The main controller is a Raspberry Pi, which hosts a WiFi hotspot and web server for control and configuration using a smartphone. Using navigation data from an e-compass sensor and a marine GPS chart plotter, it can hold position, travel in a specified direction, or follow a defined route. [Alex] is also planning to add the option of using a GPS module instead of a commercial plotter.

For an estimated total of $300, including the motor, this seems like a viable alternative to commercial systems. Of course, it might be possible to add even more features by integrating the open source ArduRover autopilot, as we've seen [rctestflight] do on multiple autonomous vessels. You can also build your own open source chart plotter using OpenCPN, which rivals commercial offerings.

#transportationhacks #autonomousboat #fishing #marinepropulsion #trollingmotor

image
2021-09-18

Solar Powered Autonomous Tugboat For Rescuing Autonomous Vessels

[rctestflight] has built several autonomous boats, and with missions becoming longer and more challenging, he bought an inflatable kayak to serve as a dedicated rescue vessel. Instead of relying on outdated manual paddling, he built an autonomous solar-powered tugboat.

♪ "Rum, treasure, ArduRover, Pixhawk 4 and so much solar, break of dawn till the day is over, the ship will surely go…" ♪

The tugboat uses a pair of molded fiberglass hulls in a catamaran configuration. The wide platform allows a pair of 100W solar panels to be mounted on top. It was [rctestflight]'s first time molding anything out of fiberglass, so there was quite a bit of trial and error going on. The mold was 3D printed in sections, aligned with dowel pins, and glued together. After the epoxy had cured, the mold halves could be split apart for easier removal of the hull.

As with most of [rctestflights] autonomous vehicles, control is handled by a Pixhawk 4 running ArduPilot/ArduRover. A pair of 76 mm brass propellers powered by brushless motors provide propulsion and differential steering. The motors get power from six LiFePO4 batteries, which charge from the solar panels via MPPT charge controllers. The hulls are covered with plywood decks with removable hatches and inspection windows. After a bit of tuning, he took the boat for a few test runs, the longest being 5.1 km with himself in tow in the kayak. At less than 5 km/h (3 mph) it's no speedboat, but certainly looks like a relaxing ride. Many of [rctestflight]'s previous vessels were airboats to avoid getting underwater propellers tangled in weeds. It was less of an issue this time since he could just haul the tugboat close to the kayak and clear the propellers.

[rctestflights] are always entertaining and educational to watch, and this one certainly sets the standard for sea-shanty soundtracks at 13:32 in part two.

#dronehacks #transportationhacks #ardupilot #autonomousboat #drone #rctestflight

image

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst