#feature_selection

2026-01-27

Линейная регрессия, встряска рейтинга и первое место. Часть 1: Ёлочка, живи

Сказ о том, как после долгого перерыва я "взял в руки шашки" (поучаствовал в ML-соревновании) и дотащил задачу на "таблички" до первого места на финальном "приватном" лидерборде с помощью простейшей подготовки фич и классической линейной регрессии с регуляризацией, внезапно обогнав при этом всех модных катбустеров, банально переобучившихся на "паблике". В задаче нужно было предсказать, "доживёт" ли ёлка до определённой даты, учитывая время рубки, наличие дома кота, вес гирлянды, далеко ли от ёлки стоит обогреватель (и есть ли он вообще) и прочие важные и не очень сведения. Узнать, что влияет на "выживаемость" ёлки

habr.com/ru/articles/987310/

#ml #ds #python #feature_engineering #feature_selection #data_visualization

2024-08-08

Рекурсивный отбор признаков. Динамический шаг в танце feature selection

В статье рассматривается выбор оптимального шага при рекурсивном отборе признаков (RFE). Предлагаются три подхода: фиксированный шаг, динамический шаг, зависящий от количества признаков, и динамический шаг, основанный на значимости признаков. На основе как искусственно сгенерированных, так и реальных наборов данных проводится анализ эффективности каждого метода, выявляются их преимущества и недостатки. Также внимание уделяется недостаткам текущей реализации RFE в библиотеке Scikit-learn, и предлагаются пути их улучшения, а также креативные подходы к решению задач feature selection.

habr.com/ru/articles/833954/

#data_science #machine_learning #feature_selection #feature_extraction #отбор_признаков #lightgbm #машинное_обучение

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst