@ryk047 @andrejbauer
I've written some here (search for #RM3) https://mathstodon.xyz/@CubeRootOfTrue/110775995709463374 about the naturalness of RM3, it is essentially the "complex logic" you get by solving the equation \( A \wedge \lnot A = \top \), akin to \( x^2 + 1 = 0 \) in the reals. In fact it's \( x^2 + x + 1 = 0.\)
Gödel said that blah blah either inconsistent or incomplete. 20th century mathematicians were so horrified at the thought of inconsistency it's been effectively banished (the "law" of excluded middle). We're happy, apparently, with incompleteness. But what about the opposite case!? Gödel himself developed a 3-valued logic, because he obviously understood that if you allow inconsistency, you can have completeness.
Normally inconsistency can't be tolerated because \( (A \wedge \lnot A) \supset B \), you can prove anything from an inconsistency, aka the principle of explosion. Hence the horror.
In a 3-valued logic, there are statements that are inconsistent, but the logic doesn't allow explosion, so everything's under control.
So yes, #paraconsistent and #relevant #logic have very much to do with foundations.
And yes, it's possibly the simplest example of a symmetric closed monoidal category (symmetry is optional), and maybe a useful teaching tool, not to mention that it's a superior logic than 2-valued logic, as it can handle vagueness.