Метрики оценки качества моделей и анализ ошибок в машинном обучении
Одним из критически важных шагов при создании хорошей модели является правильный выбор метрики для оценки её качества, поскольку неправильный выбор может привести к неверным выводам и, как следствие, к принятию не самых оптимальных решений. Поэтому на сегодняшний день существует большое количество метрик, подходящих для самых разных задач и ситуаций. В данном туториале будут рассмотрены популярные метрики для задач классификации, регрессии и кластеризации, а также инструмент для анализа ошибки модели, известный как bias-variance decomposition. Помимо этого, для большей части метрик будут представлены ручные расчёты и реализация с нуля на Python, а в конце вы сможете найти дополнительные источники для более глубокого ознакомления.
https://habr.com/ru/articles/821547/
#python #машинное_обучение #глубокое_обучение #метрики_классификации #метрики_регрессии #кластеризация #biasvariance_tradeoff #mse #rocauc #ari