#classifiers

2025-04-26

'A Comparative Evaluation of Quantification Methods', by Tobias Schumacher, Markus Strohmaier, Florian Lemmerich.

jmlr.org/papers/v26/21-0241.ht

#classifiers #supervised #quantification

2025-02-01

'An Optimal Transport Approach for Computing Adversarial Training Lower Bounds in Multiclass Classification', by Nicolas Garcia Trillos, Matt Jacobs, Jakwang Kim, Matthew Werenski.

jmlr.org/papers/v25/24-0268.ht

#adversarial #regularization #classifiers

2025-01-26

'Optimal Decision Tree and Adaptive Submodular Ranking with Noisy Outcomes', by Su Jia, Fatemeh Navidi, Viswanath Nagarajan, R. Ravi.

jmlr.org/papers/v25/23-1484.ht

#adaptive #classifiers #optimal

Alec Muffettalecmuffett
2025-01-02

Cost of false positives | Kellan Elliott-McCrea: Blog
alecmuffett.com/article/110781

2024-12-29

Cost of false positives | Kellan Elliott-McCrea: Blog

Kevin Marks (q.v.) introduced me to Kellan’s Paradox of False Positives in Social Media, which predates the themes I explored in Billion Grains of Rice by 5+ years:

Imagine you’ve got a near perfect model for detecting spammers on Twitter. Say [that] Joe is (presumably hyperbolically) claiming 99% accuracy for his model. And for the moment we’ll imagine he is right. Even at 99% accuracy, that means this algorithm is going to be incorrectly flagging roughly 2 million tweets per day as spam that are actually perfectly legitimate.

https://laughingmeme.org//2011/07/23/cost-of-false-positives/

Via: https://bsky.app/profile/kevinmarks.com/post/3lefwdts3n225

#classifiers #ofcom #onlineHarms #onlineSafetyAct

2024-11-26

'Estimating the Replication Probability of Significant Classification Benchmark Experiments', by Daniel Berrar.

jmlr.org/papers/v25/24-0158.ht

#classifiers #replicability #hypothesis

2024-11-17

'An Asymptotic Study of Discriminant and Vote-Averaging Schemes for Randomly-Projected Linear Discriminants', by Lama B. Niyazi, Abla Kammoun, Hayssam Dahrouj, Mohamed-Slim Alouini, Tareq Y. Al-Naffouri.

jmlr.org/papers/v25/22-1367.ht

#classifiers #ensembles #en

2024-11-16

'Non-splitting Neyman-Pearson Classifiers', by Jingming Wang, Lucy Xia, Zhigang Bao, Xin Tong.

jmlr.org/papers/v25/22-0795.ht

#classifiers #classifier #classification

2024-06-12

'Generalization and Stability of Interpolating Neural Networks with Minimal Width', by Hossein Taheri, Christos Thrampoulidis.

jmlr.org/papers/v25/23-0422.ht

#classifiers #generalization #minimization

Annual Computer Security Applications ConferenceACSAC_Conf@infosec.exchange
2024-05-23

Then came Severi et al.'s "Poisoning Network Flow #Classifiers", investigating the challenging scenario of clean-label #poisoning where the adversary's capabilities are constrained to tampering only with the #TrainingData. (acsac.org/2023/program/final/s) 3/4

Severi et al.'s "Poisoning Network Flow Classifiers"
2024-05-23

'Fairness guarantees in multi-class classification with demographic parity', by Christophe Denis, Romuald Elie, Mohamed Hebiri, François Hu.

jmlr.org/papers/v25/23-0322.ht

#fairness #classifiers #classification

2024-05-21

'Margin-Based Active Learning of Classifiers', by Marco Bressan, Nicolò Cesa-Bianchi, Silvio Lattanzi, Andrea Paudice.

jmlr.org/papers/v25/22-1127.ht

#classifiers #classes #algorithms

2024-05-20

'Classification with Deep Neural Networks and Logistic Loss', by Zihan Zhang, Lei Shi, Ding-Xuan Zhou.

jmlr.org/papers/v25/22-0049.ht

#classifiers #deepen #classification

2024-05-05

'Multi-class Probabilistic Bounds for Majority Vote Classifiers with Partially Labeled Data', by Vasilii Feofanov, Emilie Devijver, Massih-Reza Amini.

jmlr.org/papers/v25/23-0121.ht

#classifiers #classifier #labeling

2024-03-12

'A Multilabel Classification Framework for Approximate Nearest Neighbor Search', by Ville Hyvönen, Elias Jääsaari, Teemu Roos.

jmlr.org/papers/v25/23-0286.ht

#classification #classifiers #classifier

2023-11-22

'Random Feature Amplification: Feature Learning and Generalization in Neural Networks', by Spencer Frei, Niladri S. Chatterji, Peter L. Bartlett.

jmlr.org/papers/v24/22-1132.ht

#classifiers #neurons #relu

2023-10-02

'Lifted Bregman Training of Neural Networks', by Xiaoyu Wang, Martin Benning.

jmlr.org/papers/v24/22-0934.ht

#autoencoders #classifiers #denoising

2023-10-02

'Statistical Comparisons of Classifiers by Generalized Stochastic Dominance', by Christoph Jansen, Malte Nalenz, Georg Schollmeyer, Thomas Augustin.

jmlr.org/papers/v24/22-0902.ht

#classifiers #comparisons #randomization

2023-10-01

'Interpretable and Fair Boolean Rule Sets via Column Generation', by Connor Lawless, Sanjeeb Dash, Oktay Gunluk, Dennis Wei.

jmlr.org/papers/v24/22-0880.ht

#boolean #classifiers #fairness

2023-09-26

'Random Forests for Change Point Detection', by Malte Londschien, Peter Bühlmann, Solt Kovács.

jmlr.org/papers/v24/22-0512.ht

#changeforest #classifier #classifiers

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst