NoProp: Training Neural Networks without Back-propagation or Forward-propagation
https://arxiv.org/abs/2503.24322
#HackerNews #NoProp #Neural #Networks #Training #Backpropagation #Innovation #AI
NoProp: Training Neural Networks without Back-propagation or Forward-propagation
https://arxiv.org/abs/2503.24322
#HackerNews #NoProp #Neural #Networks #Training #Backpropagation #Innovation #AI
NoProp: Реальный опыт обучения без Backprop – от провала к 99% на MNIST
Всем привет! Обучение нейронных сетей с помощью обратного распространения ошибки (backpropagation) — это стандарт де‑факто. Но у него есть ограничения: память, последовательные вычисления, биологическая неправдоподобность. Недавно я наткнулся на интересную статью « NOPROP: TRAINING NEURAL NETWORKS WITHOUT BACK‑PROPAGATION OR FORWARD‑PROPAGATION » (Li, Teh, Pascanu, arXiv:2403.13 502), которая обещает обучение вообще без сквозного backprop и даже без полного прямого прохода во время обучения ! Идея показалась захватывающей, и мы (я и ИИ‑ассистент Gemini) решили попробовать ее реализовать на PyTorch для MNIST. В этой статье я хочу поделиться нашим путешествием: как мы пытались следовать описанию из статьи, с какими трудностями столкнулись, как анализ связанных работ помог найти решение (которое, правда, отличается от оригинала) и каких впечатляющих результатов удалось достичь в итоге. Спойлер: получилось интересно, совсем не так, как ожидалось, но результат превзошел ожидания от процесса отладки. Дисклеймер 1: Это рассказ об учебном эксперименте. Результаты и выводы основаны на нашем опыте и могут не полностью отражать возможности оригинального метода при наличии всех деталей реализации.)
https://habr.com/ru/articles/900186/
#нейронные_сети #нейронные_сети_и_машинное_обучение #машинное_обучение #deep_learning #noprop #DDPM #backpropagation #research #искусственный_интеллект