#ConvolutionalNeuralNetworks

2025-03-10

How to classify Malaria Cells using Convolutional neural network

You can find link for the code in the blog : eranfeit.net/how-to-classify-m

Check out our tutorial here : youtu.be/WlPuW3GGpQo&list=UULF

Enjoy
Eran

2025-01-05

#ConvolutionalNeuralNetworks (#CNNs in short) are immensely useful for many #imageProcessing tasks and much more...

Yet you sometimes encounter some bits of code with little explanation. Have you ever wondered about the origins of the values for image normalization in #imagenet ?

  • Mean: [0.485, 0.456, 0.406] (for R, G and B channels respectively)
  • Std: [0.229, 0.224, 0.225]

Strangest to me is the need for a three-digits precision. Here, after finding the origin of these numbers for MNIST and ImageNet, I am testing if that precision is really important : guess what, it is not (so much) !

👉 if interested in more details, check-out laurentperrinet.github.io/scib

Accuracy of ResNet on ImageNet for different image normalization valuesstandard image normalization values from https://pytorch.org/hub/pytorch_vision_resnet/
2024-11-12

📽️ In our latest video tutorial, we will create a dog breed recognition model using the NasLarge pre-trained model 🚀 and a massive dataset featuring over 10,000 images of 120 unique dog breeds 📸.

Check out our tutorial here : youtu.be/vH1UVKwIhLo&list=UULF

You can find link for the code in the blog : eranfeit.net/120-dog-breeds-mo

Enjoy
Eran

2024-07-13

🚨 Blogpost alert | Our newest blog entry delves into the use of #MachineLearning in #ClimateModelling. In the blogpost, we point out the most interesting aspects of the study “Identifying climate models based on their daily output using machine learning”, by researchers Lukas Brunnel and Sebastian Sippel. 🔎 This research sheds light on how #ConvolutionalNeuralNetworks can be trained to identify #ClimateModels using daily temperature maps. 🌡️

👀 Read the article here: buff.ly/3S7vzJf

A map of daily temperature, like those used for the study.
2024-05-25

Discover how to build a CNN model for skin melanoma classification using over 20,000 images of skin lesions

Check out our tutorial here : youtu.be/RDgDVdLrmcs

Enjoy
Eran

2023-12-30

Welcome to artificial intelligence and weather image prediction tutorial !
In this tutorial, we dive deep into Convolutional Neural Networks (CNNs) using TensorFlow and Keras to categorize weather patterns.

The link for the video tutorial is here : youtu.be/gFiISJPCpKs

Enjoy

Eran

2023-11-18

🚀 In this video tutorial, we will demonstrate visual style transfer AI and creativity between images 🎨
Learn how to use Neural Style Transfer with Python and TensorFlow, and merge the content of one image with the artistic style of another.

The link for the tutorial : youtu.be/ewvjICAaoX4

Enjoy
Eran

2023-11-04

Hi,

🌼 In our latest video tutorial, we will dive into image classification using Python and TensorFlow.
Discover how to create a Convolutional Neural Network (CNN) 📊 that can identify various types of flowers 🌻.

The link for the video tutorial is here : youtu.be/AamKeCTRSKM

Enjoy

Eran

Insights Into ImagingInsightsImaging
2023-08-02

📣 Congratulations are in order for Rikiya Yamashita et al., as their article that looks at and its application to radiological tasks is once again the Most Downloaded article of the month (June 2023)!

Well done!

🔗 insightsimaging.springeropen.c

2023-07-04

I experimented with using Large Language Models to solve a complex #imagerecognition problem.

The generated machine learning model by ChatGPT using a few prompts was able to detect #MNIST handwritten digits with an accuracy of 98%.

Read on if you want to learn how I did this.

#AI #artificialintelligence #deeplearning #neuralnetworks #bingai #bingchat #convolutionalneuralnetworks #LLMs #computervision

blog.gopenai.com/using-chatgpt

2022-11-30

Neelesh Rampal from NIWA teaches us the difference between #linearregression and #convolutionalneuralnetworks #AMOS2022

2022-05-15

Abseits dieser Ausstellung gibt es ein (offenbar noch nicht dokumentiertes) interaktives Exponat eines #ConvolutionalNeuralNetworks zur #Bilderkennung, bei dem alle Zwischenergebnisse der Convolutional, Pool und Fully-Connected-Layer auf eigenen Monitoren dargestellt sind. Mit einer Kamera kann man beliebige (vorhandene) Objekte und Bild-Karten aufnehmen und sich das Klassifikationsergebnis inklusive Konfidenz ansehen. Sehr interessant.

#DeutschesMuseum #Bonn

de.wikipedia.org/wiki/Convolut

heise online (inoffiziell)heiseonline@squeet.me
2021-10-28
Londoner Forscher haben eine KI auf den Stil von Künstlern trainiert. So können sie Werke rekonstruieren, die lange als unwiederbringlich verloren galten.
Übermaltes Picasso-Werk durch 3D-Druck wiederhergestellt
heise online (inoffiziell)heiseonline@squeet.me
2021-08-26
Ohne Implantate oder Verkabelung kommt eine neuartige Hirnschnittstelle aus. Damit konnten Versuchspersonen ein virtuelles Spiel spielen, ohne sich zu bewegen.
Mikro-Elektroden erleichtern die Gedankensteuerung von Geräten
heise online (inoffiziell)heiseonline@squeet.me
2021-05-26
Das Sortieren von verzerrten Scherben gehört zur grundlegenden Arbeit in der Archäologie, gerne macht es aber wohl niemand. Algorithmen könnten es übernehmen. Archäologie: KI klassifiziert Scherben besser und nachvollziehbarer als Menschen
2018-06-01
Machines beat doctors at detecting skin cancer

A new study (academic.oup.com/annonc/advanc…) has found that machines using deep learning convolutional neural networks (CNN) outperformed dermatologists at detecting skin cancer.

The University of Heidelberg researchers compared a CNN’s diagnostic performance with a large international group of 58 dermatologists, including 30 experts. For the study, Google’s Inception v4 CNN architecture was trained and validated using dermoscopic images and corresponding diagnoses for melanoma detection.

When the dermatologists were given a photo of the skin to analyse, they accurately identified 87% of the melanomas. The deep learning convolutional neural networks performed better, with an accuracy of 95%.

“Most dermatologists were outperformed by the CNN.

See mybroadband.co.za/news/science… mybroadband.co.za/news/science… #convolutionalneuralnetworks #deeplearning #Science
2018-03-20
2018-03-19

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst