#Optimizers

Hacker Newsh4ckernews
2025-04-21
derek the solarboiderek@solarboi.com
2025-01-23

The Optimizer Advantage?

This is not how I’d expect an optimizer system to work, at least based on how it’s advertised.

solarboi.com/2025/01/23/the-op

Erika Varis Doggetterikavaris@mas.to
2025-01-06

This MicroAdam paper from #NeurIPS2024 is nicely written! The algorithm is walked through in plain language first, and all the equations and proofs placed in the appendix. Super understandable, kudos to the authors.
arxiv.org/abs/2405.15593
#AI #MachineLearning #LLMs #optimizers

2024-12-13

'PROMISE: Preconditioned Stochastic Optimization Methods by Incorporating Scalable Curvature Estimates', by Zachary Frangella, Pratik Rathore, Shipu Zhao, Madeleine Udell.

jmlr.org/papers/v25/23-1187.ht

#optimizers #optimization #preconditioned

2024-11-18

'PyPop7: A Pure-Python Library for Population-Based Black-Box Optimization', by Qiqi Duan et al.

jmlr.org/papers/v25/23-0386.ht

#optimizers #optimization #pypop7

2024-07-06

'Multi-Objective Neural Architecture Search by Learning Search Space Partitions', by Yiyang Zhao, Linnan Wang, Tian Guo.

jmlr.org/papers/v25/23-1013.ht

#optimizers #optimizer #optimizations

2024-06-11

'Robust Black-Box Optimization for Stochastic Search and Episodic Reinforcement Learning', by Maximilian Hüttenrauch, Gerhard Neumann.

jmlr.org/papers/v25/22-0564.ht

#reinforcement #optimizers #optimizes

2024-06-05

'Neural Feature Learning in Function Space', by Xiangxiang Xu, Lizhong Zheng.

jmlr.org/papers/v25/23-1202.ht

#features #feature #optimizers

2024-04-24

'Win: Weight-Decay-Integrated Nesterov Acceleration for Faster Network Training', by Pan Zhou, Xingyu Xie, Zhouchen Lin, Kim-Chuan Toh, Shuicheng Yan.

jmlr.org/papers/v25/23-1073.ht

#accelerated #optimizers #adaptive

2024-04-13

'Scaling the Convex Barrier with Sparse Dual Algorithms', by Alessandro De Palma, Harkirat Singh Behl, Rudy Bunel, Philip H.S. Torr, M. Pawan Kumar.

jmlr.org/papers/v25/21-0076.ht

#optimizers #sparse #dual

2024-04-09

'Polygonal Unadjusted Langevin Algorithms: Creating stable and efficient adaptive algorithms for neural networks', by Dong-Young Lim, Sotirios Sabanis.

jmlr.org/papers/v25/22-0796.ht

#langevin #adaptive #optimizers

2024-02-25

'Improving physics-informed neural networks with meta-learned optimization', by Alex Bihlo.

jmlr.org/papers/v25/23-0356.ht

#optimizers #learnable #learned

Published papers at TMLRtmlrpub@sigmoid.social
2023-09-05

A DNN Optimizer that Improves over AdaBelief by Suppression of the Adaptive Stepsize Range

Guoqiang Zhang, Kenta Niwa, W. Bastiaan Kleijn

Action editor: Rémi Flamary.

openreview.net/forum?id=VI2JjI

#optimizers #imagenet #optimizer

New Submissions to TMLRtmlrsub@sigmoid.social
2023-07-19

Auto-configuring Exploration-Exploitation Tradeoff in Population-Based Optimization: A Deep Reinforcement Learning Approach

openreview.net/forum?id=U2viPs

#exploration #optimizers #reinforcement

New Submissions to TMLRtmlrsub@sigmoid.social
2023-07-08
New Submissions to TMLRtmlrsub@sigmoid.social
2023-07-05

The Slingshot Effect: A Late-Stage Optimization Anomaly in Adaptive Gradient Methods

openreview.net/forum?id=OZbn8U

#adaptive #optimizers #slingshot

Published papers at TMLRtmlrpub@sigmoid.social
2023-05-24

Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques

Filip Hanzely, Boxin Zhao, mladen kolar

Action editor: Naman Agarwal.

openreview.net/forum?id=ilHM31

#optimizers #personalized #optimization

New Submissions to TMLRtmlrsub@sigmoid.social
2023-03-31

A DNN Optimizer that Improves over AdaBelief by Suppression of the Adaptive Stepsize Range

openreview.net/forum?id=VI2JjI

#optimizers #imagenet #optimizer

Published papers at TMLRtmlrpub@sigmoid.social
2023-01-30

Constrained Parameter Inference as a Principle for Learning

Nasir Ahmad, Ellen Schrader, Marcel van Gerven

openreview.net/forum?id=CUDdbT

#backpropagation #neuron #optimizers

2022-12-12

Algorithms utilizing more than 4-qbits in #quantumcomputing ...here is a timely and informative manuscript on #benchmarking results #algorithm #optimizers #computing #data #MachineLeaning #QuantumML
arxiv.org/abs/2211.15631

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst