#RStan

2025-05-28

I now understand better why wiener waffeln exist.... every time my initial values are rejected I eat one
#rstats #brms #rstan #ddm

Ecology & Evolution of HealthEcoEvoHealth
2025-03-12

πŸ“° Happy to announce the publication in @PeerCommunityJournal of our analysis of dynamics.

🦠 This work provides unprecedented insights into the occurrence of .

Thanks to the participating in the study at CHU Montpellier (France) πŸ™

The model (all in ) was built by @tsukushi_kamiya and the sequencing of over 2.000 samples was done in Jacques Ravel's lab. This work stems from the @ERC_Research project.

peercommunityjournal.org/artic

2025-03-12

Heureux d'annoncer la publication dans @PeerCommunityJournal de notre analyse de la dynamique du #MicrobioteVaginal.

Ces travaux sont issus de l'Γ©tude #PAPCLEAR promue par le #CHU_Montpellier et financΓ©e par l' @ERC_Research, qui reprΓ©sente l'un des suivis les plus longs Γ  ce jour.

Le magnifique modèle statistique (tout en #RStan) a été réalisé par @tsukushi_kamiya et le séquençage #16S de plus de 2000 échantillons réalisé dans le laboratoire de Jacques Ravel.

peercommunityjournal.org/artic

Dr Mircea Zloteanu 🌼🐝mzloteanu
2024-09-16

#181 Comparing Bayesian Approaches by @jebyrnes

Thoughts: Compares running models in , , , , and via . It's nice to have options.

biol609.github.io/lab/alt_to_r

Dr Mircea Zloteanu 🌼🐝mzloteanu
2024-08-29

#169 {priorsense} prior diagnostics and sensitivity analysis

Thoughts: Bayesian modelling requires more scrutiny of how one's choices impact outcomes. This packages has handy functions + plots.


n-kall.github.io/priorsense/

2024-02-19

ΠžΠ±Π·ΠΎΡ€ Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠΈ Stan Π² R

ΠŸΡ€ΠΈΠ²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽ! Stan - это Π±ΠΈΠ±Π»ΠΈΠΎΡ‚Π΅ΠΊΠ° Π½Π° C++, прСдназначСнная для байСсовского модСлирования ΠΈ Π²Ρ‹Π²ΠΎΠ΄Π°. Она ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ сэмплСр NUTS, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΎΠ·Π΄Π°Π²Π°Ρ‚ΡŒ апостСриорныС симуляции ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΠΎΡΠ½ΠΎΠ²Ρ‹Π²Π°ΡΡΡŒ Π½Π° Π·Π°Π΄Π°Π½Π½Ρ‹Ρ… ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΌ модСлях ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…. Π’Π°ΠΊ ΠΆΠ΅ Stan ΠΌΠΎΠΆΠ΅Ρ‚ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ LBFGS для максимизации Ρ†Π΅Π»Π΅Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ ΠΊΠ°ΠΊ логарифмичСскоС ΠΏΡ€Π°Π²Π΄ΠΎΠΏΠΎΠ΄ΠΎΠ±ΠΈΠ΅ . Для облСгчСния Ρ€Π°Π±ΠΎΡ‚Ρ‹ с Stan ΠΈΠ· языка программирования R доступСн ΠΏΠ°ΠΊΠ΅Ρ‚ rstan , ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ прСдоставляСт интСрфСйс R для Stan. БСгодня ΠΌΡ‹ ΠΈ рассмотрим этот ΠΏΠ°ΠΊΠ΅Ρ‚.

habr.com/ru/companies/otus/art

#rstan #r #Π°Π½Π°Π»ΠΈΡ‚ΠΈΠΊΠ° #машинноС_ΠΎΠ±ΡƒΡ‡Π΅Π½ΠΈΠ΅ #c++

2023-03-12

If I am a toddler in my #statistics development, then I could be said to be a baby in #Rstats, but I haven't even had my umbilical cord cut in #bayes. I installed #rstan this morning, then ran the schools.stan example.

My laptop didn't seem to do anything so I assumed that I had installed incorrectly and so went to make a cup of tea.

Imagine my surprise when I returned to a screen full of all sorts of stuff.

I am the noobiest of noobs. A lot to learn!

Trying to work out the simplest way to find out if my team’s Windows permissions allow them to compile Stan models. Have assumed that compiling models is like compiling packages (is that a good assumption?)
I've come up with:
1. Install Rtools (cran.ma.imperial.ac.uk/bin/windows/Rtools)
2. > install.packages("devtools")
3. Find a small, intriguing package: BRRR
4. > devtools::install_github("brooke-watson/BRRR", build = TRUE)
#Rstats #R #Rstan

2023-02-09

You've heard about Stan and want to learn some more? Maybe you're about to step into the Bayesian paradigm and don't know where to start πŸ€”

In this week's blog post, we'll take a look what you can do with #Stan and draw comparisons to #JAGS!

jumpingrivers.com/blog/why-sta

#DataScience #RStats #Python #RStan #PyStan #Bayesian

Dennis Prangledennisprangle
2022-11-23

Anyone know any good intro resources for that cover ADVI as well as (or instead of) NUTS?

IgnacioIgnacio
2020-05-02

My package for creating interactive visualizations is finally available on CRAN :ignacio82.github.io/vizdraws/
The package can probably use better documentation, additional features, and it may have some bugs. However, I thought that the best way to keep improving it was to push it.

2017-10-11

More support for Bayesian analysis in the sj!-packages #rstats #rstan #brms link.rweekly.org/6jg #rstats #datascience

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst