#Summation

2025-04-08

Сумма из 51 узбекистанского сузани разных веков (выглядит как суммарное изображение из ковров). #summation #pictorialsummation #suzani #Uzbekistaniart #blurred #decorativeart #collage #publicdomain

Чётно-симметричное размытое изображение в красновато-серо-коричневых тонах. // Evenly symmetrical blurred image in reddish-gray-brown tones. // СС0/public domain
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2025-03-17
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2025-03-06
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2025-02-27
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2025-02-24
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2025-02-19
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2025-02-16
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2025-01-13
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-11-27
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-10-19
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-10-01
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-09-30
ƧƿѦςɛ♏ѦਹѤʞspacemagick
2024-07-12

@zvavybir
It does diverge. It has no sum.
However, the uniquely valued can be analytically continued into the left half-plane where we find zeta(-1)=-1/12 (which 'looks like' 1+2+...). will get you part of the way there also, and, as you say, yields the same result; presumably due to some ultimate cosmic logical rightness :-)
I very strongly recommend BP's superb exposition of this issue
youtube.com/watch?v=YuIIjLr6vUA

Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-07-04
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-06-06
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-06-01
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-05-23
Pustam | पुस्तम | পুস্তম🇳🇵pustam_egr@mathstodon.xyz
2024-05-18

Try to prove the following two results that relate the harmonic numbers to the golden ratio. Have an excellent weekend.

\[\displaystyle\sum_{n=1}^\infty\binom{2n}n\dfrac{H_n}{5^n}=2\sqrt5\ln\varphi\]

\[\displaystyle\sum_{n=1}^\infty\binom{2n}n\dfrac{H_n}{5^nn}=\frac{2\pi^2}{15}-2\ln^2\varphi\]

where \(\varphi=\frac{1+\sqrt5}2\) is the golden ratio; and \(H_n=\left(1+\frac12+\frac13+\ldots+\frac1n\right)\) is the \(n\)-th harmonic number.

#GoldenRatio #HarmonicNumbers #HarmonicNumber #Logarithm #Pi #Summation #Math #Sum #InfiniteSum #Binomial #BinomialCoefficient #Maths #WeekendChallenge

Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2024-03-25
Dingo Art 🔞Open CommissionDungeonDingo@thicc.horse
2023-11-01

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst