#Supervised_finetuning

2024-12-27

[Перевод] Законы масштабирования – архитектура O1 Pro // Инфраструктура синтетических данных, RLAIF, токеномика вычислений

С каждым днем растут страхи и сомнения относительно законов масштабирования ИИ. Большинство предсказателей отрасли ИИ утверждают об окончании законов масштабирования, которые за последние несколько лет привели к мгновенному улучшению возможностей крупных языковых моделей (LLM). К ним присоединились журналисты, вооружившись неопределенной информацией о неспособности моделей успешно масштабироваться из-за предполагаемой низкой производительности. Критики также указывают на исчерпание доступных данных для обучения и замедление масштабирования оборудования для обучения.

habr.com/ru/articles/869674/

#O1_Pro #AI_Lab #RLAIF #Законы_масштабирования #синтетические_данные #OpenAI #Claude_35_Opus #RLHF #llm #supervised_finetuning

2024-07-24

[Перевод] Что такое supervised fine-tuning?

Supervised fine-tuning (SFT) — это методика, применяемая для адаптации предварительно обученных Large Language Model (LLM) под конкретную задачу при помощи размеченных данных. В процессе SFT предварительно обученные LLM подвергаются fine-tuning на основе размеченного датасета при помощи методик обучения с учителем. Веса модели выравниваются на основании градиентов, полученных из функции потерь конкретной задачи, измеряющей разность между прогнозами LLM и эталонной разметкой. Этот процесс позволяет модели обучаться паттернам и нюансам конкретной задачи, адаптируя её параметры в соответствии с распределением конкретных данных и требований задачи. SFT, обычно выполняемый после предварительного обучения модели, применяется для того, чтобы научить модель следовать переданным пользователем инструкциям. Он более вычислительно затратен, чем fine-tuning без учителя, но и имеет больше шансов достичь повышенной точности. Объём необходимого дообучения зависит от сложности задачи и размера датасета. В случае простого переноса стиля с использованием моделей OpenAI наподобие GPT-3.5 или GPT-4 для получения превосходных результатов обычно достаточно 30-50 высококачественных примеров. Чтобы преобразовать базовую Large Language Model (LLM) в выполняющую инструкции LLM (например, превратить Mistral в Mistral Instruct), обычно требуется обучение на десятках тысяч примеров. Дообучение Zephyr 7b выполнялось на 16 GPU Nvidia A100 в течение примерно четырёх часов. Это можно считать примером отправной точки для модели с 7 миллиардами параметров.

habr.com/ru/articles/829318/

#Машинное_обучение #LLM #finetuning #Трансферное_обучение #LoRA #QLoRA #SFT #Supervised_finetuning #датасет #размета_данных #dataset #данные #data #разметка

2024-07-23

[Перевод] Как с помощью supervised fine-tuning кастомизировать LLM

В быстро развивающейся сфере Natural Language Processing (NLP) fine-tuning стал мощным и эффективным инструментом адаптации предварительно обученных больших языковых моделей (Large Language Model, LLM) под конкретные задачи. Предварительно обученные LLM (например, семейство GPT) продемонстрировали существенный прогресс в понимании и генерации языка. Однако эти предварительно обученные модели обычно учатся на огромных объёмах текстовых данных при помощи обучения без учителя и могут быть не оптимизированы под узкую задачу. Fine-tuning позволяет закрыть этот пробел, воспользовавшись преимуществами общего понимания языка, полученными во время предварительного обучения, и адаптировав их к целевой задаче при помощи обучения с учителем. Благодаря fine-tuning предварительно обученной модели на специфичном для задачи датасете разработчики NLP могут достигать впечатляющих результатов с гораздо меньшим объёмом данных обучения и вычислительных ресурсов, чем при обучении модели с нуля. В частности, для LLM fine-tuning крайне важен, так как повторное обучение на всём объёме данных вычислительно слишком затратно. Сравнение предварительного обучения LLM и fine-tuning Успех fine-tuning привёл ко множеству передовых результатов в широком спектре задач NLP и сделал его стандартной практикой в разработке высокоточных языковых моделей. Исследователи и практики продолжают исследовать варианты и оптимизации методик fine-tuning, чтобы ещё больше расширить возможности NLP. В этой статье мы глубже изучим процесс fine-tuning LLM на основе инструкций при помощи библиотеки transformers двумя разными способами: просто с библиотекой transformers и с модулем trl .

habr.com/ru/articles/829324/

#Машинное_обучение #LLM #Finetuning #SFT #Supervised_finetuning #NLP #Large_Language_Model #датасет #размета_данных #dataset #данные #data #разметка

2024-07-22

[Перевод] Supervised Fine-Tuning: как настроить LLM под конкретную задачу?

Пожалуй, для адаптации больших языковых моделей (large language model, LLM) под чётко очерченные задачи обработки естественного языка (natural language processing, NLP) нет технологии лучше, чем SFT (supervised fine-tuning). Для дообучения модели её необходимо предварительно обучить, а это означает, что она уже многому научилась из широкого спектра текстов. Но можно ли после одного лишь предварительного обучения использовать модель в различных типах задач? Да, но ей всё равно будет не хватать совершенствования при помощи SFT, чтобы она действительно могла выполнять требуемые действия и стала опытной в определённой сфере знаний.

habr.com/ru/articles/829936/

#Машинное_обучение #supervised_finetuning #SFT #LLM #NLP #RAG #Instruction_finetuning #датасет #размета_данных #dataset #данные #data #разметка

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst