Перевод датасета для оценки эмпатии на русский язык: подход, проблемы, результаты
Эмпатия играет важную роль в коммуникации между людьми, и в частности, в сервисах психологической помощи. В онлайн-среде, где такая помощь всё чаще оказывается в текстовом формате, появляется много различных сервисов, которые предоставляют психологическую помощь на основе чатботов. Для них способность отвечать эмпатично становится критически важным навыком. В противном случае хорошо если сеанс окажется просто бесполезным и не усугубит имеющиеся проблемы. Успех БЯМ побуждает разработчиков использовать их в качестве основы для таких чатботов. Для оценки их способностей разрабатываются различные бенчмарки, в частности для задач с уклоном в психотерапию. Одним из таких является PsyEval . Однако для автоматической оценки эмпатии в текстах на русском языке размеченных датасетов просто нет. Мы, русскоязычные MLщики, не можем сказать, как сейчас БЯМ справляются с задачами, которые связаны с выявлением эмпатии и генерацией эмпатичных ответов. А ведь эти задачи напрямую влияют на качество инструментов псих-поддержки. Чтобы это хоть как-то исправить, мы приспособили большие языковые модели к переводу датасета с английского на русский язык. В этом посте я расскажу, как мы в команде Пситехлаб переводили датасет EPITOME с помощью больших языковых моделей.
https://habr.com/ru/articles/946264/
#llm #natural_language_processing #machine_learning #artificial_intelligence #перевод_с_английского #пситехлаб #датасет