'Entropic Gromov-Wasserstein Distances: Stability and Algorithms', by Gabriel Rioux, Ziv Goldfeld, Kengo Kato.
http://jmlr.org/papers/v25/24-0039.html
#regularization #wasserstein #variational
'Entropic Gromov-Wasserstein Distances: Stability and Algorithms', by Gabriel Rioux, Ziv Goldfeld, Kengo Kato.
http://jmlr.org/papers/v25/24-0039.html
#regularization #wasserstein #variational
Bayesian Meta-Learning Is All You Need
— Why is the deterministic view of meta-learning not sufficient?
— What is the variational inference?
— How can we design neural-based Bayesian meta-learning algorithms?
https://jameskle.com/writes/bayesian-meta-learning-is-all-you-need
'Structured Optimal Variational Inference for Dynamic Latent Space Models', by Peng Zhao, Anirban Bhattacharya, Debdeep Pati, Bani K. Mallick.
http://jmlr.org/papers/v25/22-0514.html
#variational #models #priors
'A Framework for Improving the Reliability of Black-box Variational Inference', by Manushi Welandawe, Michael Riis Andersen, Aki Vehtari, Jonathan H. Huggins.
http://jmlr.org/papers/v25/22-0327.html
#variational #adaptively #optimization
`Using the framework of utility-calibrated #variational inference, we unify Gaussian process approximation & data acquisition into a joint #optimization problem, thereby ensuring optimal decisions under a limited computational budget. Our approach can be used with any decision-theoretic acquisition function and is compatible with trust region methods like TuRBO... Our approach outperforms standard SVGPs on high-dimensional benchmark tasks in control and molecular design`
'A Variational Approach to Bayesian Phylogenetic Inference', by Cheng Zhang, Frederick A. Matsen IV.
http://jmlr.org/papers/v25/22-0348.html
#phylogenetic #bayesian #variational
'Low-rank Variational Bayes correction to the Laplace method', by Janet van Niekerk, Haavard Rue.
http://jmlr.org/papers/v25/21-1405.html
#variational #hyperparameters #approximations
'Additive smoothing error in backward variational inference for general state-space models', by Mathis Chagneux, Elisabeth Gassiat, Pierre Gloaguen, Sylvain Le Corff.
http://jmlr.org/papers/v25/22-1392.html
#variational #smoothing #estimation
'Black Box Variational Inference with a Deterministic Objective: Faster, More Accurate, and Even More Black Box', by Ryan Giordano, Martin Ingram, Tamara Broderick.
http://jmlr.org/papers/v25/23-1015.html
#variational #optimizer #optimizing
Os VAE são fascinantes...😮
'Generic Unsupervised Optimization for a Latent Variable Model With Exponential Family Observables', by Hamid Mousavi, Jakob Drefs, Florian Hirschberger, Jörg Lücke.
http://jmlr.org/papers/v24/22-0359.html
#probabilistic #sparse #variational
'Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders: Methodology and Asymptotics', by Kamélia Daudel, Joe Benton, Yuyang Shi, Arnaud Doucet.
http://jmlr.org/papers/v24/22-1160.html
#variational #divergence #estimators
Detecting incidental correlation in multimodal learning via latent variable modeling
Taro Makino, Yixin Wang, Krzysztof J. Geras, Kyunghyun Cho
Action editor: Thang Bui.
Variational Elliptical Processes
Maria Margareta Bånkestad, Jens Sjölund, Jalil Taghia, Thomas B. Schön
Action editor: Sinead Williamson.
Pathwise gradient variance reduction in variational inference via zero-variance control variates
'Variational Inverting Network for Statistical Inverse Problems of Partial Differential Equations', by Junxiong Jia, Yanni Wu, Peijun Li, Deyu Meng.
http://jmlr.org/papers/v24/22-0006.html
#generative #bayesian #variational
'Variational Gibbs Inference for Statistical Model Estimation from Incomplete Data', by Vaidotas Simkus, Benjamin Rhodes, Michael U. Gutmann.
http://jmlr.org/papers/v24/21-1373.html
#variational #models #gibbs
'Variational Inference for Deblending Crowded Starfields', by Runjing Liu, Jon D. McAuliffe, Jeffrey Regier.
http://jmlr.org/papers/v24/21-0169.html
#galaxies #starnet #variational
PAVI: Plate-Amortized Variational Inference
Transport Score Climbing: Variational Inference Using Forward KL and Adaptive Neural Transport
Liyi Zhang, David Blei, Christian A Naesseth
Action editor: Michal Valko.