#vectorstore

AI Daily Postaidailypost
2026-01-10

New research shows semantic caching can cut LLM inference costs by up to 73%—even when cache hits are misleading. The AdaptiveSemanticCache uses a QueryClassifier and similarity thresholds to decide when to reuse embeddings from a vector_store, dramatically reducing token usage. Curious how this works and how you can apply it to your own models? Read the full breakdown.

🔗 aidailypost.com/news/semantic-

AI Daily Postaidailypost
2025-11-10

Discover how a vector store can act as a model's local memory in our new LLMOps guide. Learn to set up FAISS with LangChain, generate embeddings in Python, and boost your OpenAI workflows. Turn your LLM into a smarter, self‑retrieving system—read the full walkthrough now!

🔗 aidailypost.com/news/llmops-gu

2025-01-31

Thought of the day: Instead of chunking a document and generating an embedding for each of those chunks, store a single document with multiple embeddings (for each chunk + summary chunk(s)) and consider all these embeddings when trying to find relevant documents for a particular input... #llm #rag #vectorstore

LinoTadroslinotadros
2025-01-30

Video: Using an external Azure AI Search Vector store in Azure AI Foundry Prompt Flow.
youtu.be/v3hcfY1oe_k?si=GlAApF
@thetrainingboss

2024-08-09

Explored efficient AI data retrieval with RAG & Redis in my latest blog. A deep dive into ETL for weather data. buff.ly/3AkeFBa #AI #DataProcessing #ETL #Redis #VectorStore #OpenAI

:rss: Qiita - 人気の記事qiita@rss-mstdn.studiofreesia.com
2024-05-13
:rss: Qiita - 人気の記事qiita@rss-mstdn.studiofreesia.com
2024-05-08
:rss: CyberAgent Developers Bldevelopers@rss-mstdn.studiofreesia.com
2023-12-21
Paolo Tamagninipaolotamag
2023-10-20

⬆️🧵 🧵⬇️

2) 🏰 Nottingham, November 30th at Nottingham Trent Univeristy with Daphiny Pottmaier and Girinath G. Pillai

meetup.com/knime-user-group-uk

Paolo Tamagninipaolotamag
2023-10-05

⬆️🧵 Examples 🧵⬇️

for asking specific questions on a just uploaded powered by and a

Read more on how to deploy a into a at: knime.com/blog/baking-ai-into-

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst