#Functions

Steven Sandersonspsanderson@rstats.me
2025-06-04

Today I wrote on #Python #Functions because that is what I read about. I'm learning as I write the series so I will probably make mistakes or do things less then better, but be kind I'm trying :)

Post: spsanderson.com/steveondata/po

#Python #Blog #Functions #Code #Programming #Technology

Today I wrote on #Python #Functions because that is what I read about. I'm learning as I write the series so I will probably make mistakes or do things less then better, but be kind I'm trying :)

Post: https://www.spsanderson.com/steveondata/posts/2025-06-04/

#Python #Blog #Functions #Code #Programming #Technology
Steven P. Sanderson II, MPHstevensanderson@mstdn.social
2025-06-04

Today I wrote on #Python #Functions because that is what I read about. I'm learning as I write the series so I will probably make mistakes or do things less then better, but be kind I'm trying :)

Post: spsanderson.com/steveondata/po

#Python #Blog #Functions #Code #Programming #Technology

Today I wrote on #Python #Functions because that is what I read about. I'm learning as I write the series so I will probably make mistakes or do things less then better, but be kind I'm trying :)

Post: https://www.spsanderson.com/steveondata/posts/2025-06-04/

#Python #Blog #Functions #Code #Programming #Technology
Frontend Dogmafrontenddogma@mas.to
2025-05-30

I Think the Ergonomics of Generators Is Growing on Me, by @macarthur.me:

macarthur.me/posts/generators/

#javascript #functions

Frontend Dogmafrontenddogma@mas.to
2025-05-29

The New “if()” Function in CSS Has Landed in the Latest Chrome, by @amitmerchant.bsky.social:

amitmerchant.com/the-if-functi

#css #functions #chrome #google #browsers

Nils M HolmAverageDog
2025-05-27

@filiph @fuxoft
If a function has a neutral element, then applying it to zero arguments will return it. If a function has no neutral element, calling it with zero arguments is an error.
E.g.:
(sin) ==> error
(-) ==> error
(- 1) ==> -1
(- 1 1) ==> 0
(- 10 2 3) ==> 5

∞ 𝕁uan ℂarlosjcponcemath@mathstodon.xyz
2025-05-23

Procedural landscape generation:

#threejs #mathbox #trigonometric #functions

2025-05-22

I made a "small" #Shadertoy #GLSL thingy that can generate implicit functions with equal thickness (Thanks for the magic of dual numbers). Link: shadertoy.com/view/wcyGRw

It features a large set of functions:

- Elementary operations
> +, -, *, /
- Exponentials
> exp, log
- Powers and roots
> sqrt, cbrt, pow (TODO)
- Sign related
> step, sgn, ramp, abs
Rounding
> floor, round, ceil
Trigonometry:
> sin, cos, tan, sec, csc, cot,
Hyperbolics:
> sinh, cosh, tanh, sech, csch, coth
Inverse trigonometry:
> asin, acos, atan, asec, acsc, acot
Inverse hyperbolics
> asinh, acosh, atanh, asech, acsch, acoth

It only has some bugs with functions that have poles. For example y=tan(x) produces straight lines at each pole.

#programming #shaders #math #functions #derivative #dualnumbers #realnumbers

Press Red Podcasting Networkpressredmedia@makertube.net
2025-05-20
Frontend Dogmafrontenddogma@mas.to
2025-05-19

“shape()”: A New Powerful Drawing Syntax in CSS, by @chriscoyier (@frontendmasters.com):

frontendmasters.com/blog/shape

#css #functions #shapes #clipping

Frontend Dogmafrontenddogma@mas.to
2025-05-15
Pustam | पुस्तम | পুস্তম🇳🇵pustam_egr@mathstodon.xyz
2025-05-14

Integrals of inverse functions!

Proof without words (see image; credit: Jonathan Steinbuch, CC BY-SA 3.0, via Wikimedia Commons)...

For any montonic and invertible function \(f(x)\) in the interval \([a,b]\):
\[\displaystyle\int_a^bf(x)~ \mathrm dx+\int_{f(a)=c}^{f(b)=d}f^{-1}(x)~\mathrm dx=b\cdot f(b)-a\cdot f(a)=bd-ac\]

If \(F\) is an antiderivative of \(f\), then the antiderivatives of \(f^{-1}\) are:
\[\boxed{\displaystyle\int f^{-1}(y)~\mathrm dy=yf^{-1}(y)-F\circ f^{-1}(y)+C}\]
where \(C\) is an arbitrary constant (of integration), and \(\circ\) is the composition operator (function composition).

For example:
\[\begin{align*}\displaystyle\int \sin^{-1}(y) \, \mathrm dy &= y\sin^{-1}(y) - (-\cos(\sin^{-1}(y)))+C\\ &=y\sin^{-1}(y)+\sqrt{1-y^2}+C\end{align*}\]

\[\displaystyle\int \ln(y) \, dy = y\ln(y)-\exp(\ln(y)) + C= y\ln(y)-y + C.\]

#Function #InverseFunction #InverseFunctions #Functions #Integral #Integrals #Antiderivative #Integration #Calculus #FunctionComposition #CompositeFunction)

10bmnews10bmnews
2025-05-12

Trying to restore bodily functions after spinal cord injuries

Trying to restore bodily functions after spinal cord injuries - CBS News Watch CBS News A Swiss research center is trying to use innovative technology to help restore bodily functions for paralyzed patients—and even help Parkinson's patients walk smoothly again. Be the first to know Get browser notifications for breaking news, live events, and exclusive reporting. Not Now Turn On

10bmnews.com/2025/05/trying-to

Frontend Dogmafrontenddogma@mas.to
2025-05-09
Inautiloinautilo
2025-05-09


JavaScript, what is this? · Demystifying JavaScript’s confusing ‘this’ keyword (part 2) ilo.im/163r5j

_____

Frontend Dogmafrontenddogma@mas.to
2025-05-08

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst