AI фэшн-стилист-колорист или как научить модель различать 16,7 млн оттенков без их текстового представления
Небольшое интро, в котором многие себя узнают Как часто, листая продуктовый каталог в интернет-магазине одежды, вы не находили товар нужного вам оттенка? Наткнувшись на юбку мечты, вы перебираете в уме все имеющиеся в арсенале аксессуары и понимаете, что ничего подходящего нет. Нужно срочно искать нечто как минимум идеальное для этого образа! Но как перебирать товары вручную? Как отфильтровать их по ограниченному набору предлагаемых цветов? А теперь представьте, что вас пригласили на свадьбу с заранее определенной палитрой желательных цветов для костюма. Согласитесь, вероятность успеха в поисках не так велика в условиях, если нужно подобрать, например, светло-пурпурный. И вопрос работы с оттенками является важным не только при подборе гардероба. Сфера интерьерного дизайна неразрывно связана с цветовыми решениями при согласовании элементов декора, выборе краски, обоев и отделочных материалов; Цифровой дизайн работает с логотипами, баннерами, интерфейсами, в которых также важна колористика; Индустрия красоты : подбор оттенков косметики, которые будут гармонировать с кожей и одеждой клиента; Искусство: анализ цветовой палитры произведений искусства, реставрация картин, создание новых произведений с учетом цветовых гармоний; Реклама: создание ярких и запоминающихся материалов с учетом психологии восприятия цвета; Автомобили и мотоциклы : поиск краски для маскировки царапин или полной перекраски, чтобы цвет точно соответствовал оригиналу; выбор аксессуаров — диски, накладки, коврики и чехлы, которые соответствуют цвету транспортного средства.
https://habr.com/ru/companies/neoflex/articles/823326/
#neoflex #datascience #computervision #deeplearning #keras #tensorflow #tripletloss #neuralnetworks #sklearn #python