#dataframe

Diego Córdoba 🇦🇷d1cor@mstdn.io
2025-06-18

Nuevo post en el blog de #juncotic! 💪

Seguimos con #python de la mano de @andrea_navarro

¿Han usado #Pandas para trabajar con datos?

Hoy Andrea nos explica cómo usarlo para ordenar columnas de un DataFrame, con ejemplos prácticos, y un CSV descargable para jugar con los datos 😃

Pueden leerlo acá: 👇

juncotic.com/ordenamiento-de-c

Espero que les guste y sirva! 🙂

#python #pandas #dataframe #datascience #data

Steven P. Sanderson II, MPHspsanderson.com@bsky.brid.gy
2025-06-09

I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors. Post: www.spsanderson.com/steveondata/... #R #RStats #tibble #dplyr #tidyverse #dataframe #baseR #blog

I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors.

Post: https://www.spsanderson.com/steveondata/posts/2025-06-09/

#R #RStats #tibble #dplyr #tidyverse #dataframe #baseR #blog #Technology
Steven Sandersonspsanderson@rstats.me
2025-06-09

I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors.

Post: spsanderson.com/steveondata/po

#R #RStats #tibble #dplyr #tidyverse #dataframe #baseR #blog #Technology

I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors.

Post: https://www.spsanderson.com/steveondata/posts/2025-06-09/

#R #RStats #tibble #dplyr #tidyverse #dataframe #baseR #blog #Technology
Steven P. Sanderson II, MPHstevensanderson@mstdn.social
2025-06-09

I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors.

Post: spsanderson.com/steveondata/po

#R #RStats #tibble #dplyr #tidyverse #dataframe #baseR #blog #Technology

I've talked about creating data.frames and tibbles before, but it is an important topic so I have covered it again. This time specifically from the perspective of creating them from vectors.

Post: https://www.spsanderson.com/steveondata/posts/2025-06-09/

#R #RStats #tibble #dplyr #tidyverse #dataframe #baseR
2025-05-19

Anybody using the narwhals #python package for #dataframe manipulations?

Very comfortable with #pandas and #polars syntax, but although #narwhals is supposed to be very close to polars, it is a subset and I find that there is a lot of basic stuff missing. Trying to figure out how to get the first part of a str.split.

in pandas I just add .str[0] and in polars .list.get(0)

with narwhals neither approaches are implemented. Any idea as what is supported in narwhals to do this?
#programming

Hacker Newsh4ckernews
2025-05-17

Fahmatrix – A Lightweight, Pandas-Like DataFrame Library for Java

github.com/moustafa-nasr/fahma

2025-04-29

Computing travel time matrices in r⁵py from @geopandas #DataFrame is two lines of code:

(1) create an r5py.TransportNetwork from @openstreetmap and #GTFS data

(2) turn it into an r5py.TravelTimeMatrix()

Try it out in #binder: r5py.readthedocs.io/stable/use

A map of central Helsinki. A transparent overlay shows a grid of cells that are coloured according to the time needed to travel to their centre point from the railway station
SimpleSimplersimpleSolutuon
2025-04-06

OPEN SOURCE 🚀

The Problem❔

There have been many instances where I needed to compare two dataframes and analyze their differences. To address this need, I created a fast Python library called "data_fingerprint" that does exactly that.

Check it out and let me know what you think! 🕵‍♂️
github.com/SimpleSimpler/data_

2025-04-01

Parsing CSV with units in the header · Issue #166 · hgrecco/pint-pandas

github.com/hgrecco/pint-pandas

Now we can read a #csv file with a header like `time / s,mass / g` into #pandas and call `.pint.quantify()` to get a #dataframe in which the columns have #units as in #Pints !

Handy for CSV restricted to single-row headers, as in Confluence Databases and Microsoft Lists.

GitHub issue
2025-02-14

Hi fedi 😊
I am struggling with #vegaaltair.

Do you have any resources of density faceted plots ?

I am trying to #plot densities of a selection of columns of a #dataframe with mean and median highlighted.

#dataviz #DataScience #Python

2024-12-05

what I can do is #thresholding / binarize and obtain the boundary, but not save each boundary as its own file (hopefully as a #DataFrame)

2024-11-28

I’ve written article about #pandera - #Python package used for #pandas #DataFrame validation: linkedin.com/pulse/do-you-use-

(Sorry that this is on LinkedIn, but I’m trying to reach general audience there - my main goal is to promote the package and @pyOpenSci , and LinkedIn has larger community than my personal blog 😊)

2024-11-15

[Перевод] 7 продвинутых приемов pandas для науки о данных

Pandas — это основная библиотека для работы с данными. Вот несколько приёмов, которые я использую, чтобы быстрее и проще выполнять повторяющиеся задачи по работе с данными.

habr.com/ru/articles/858894/

#pandas #datascience #numpy #matplotlib #анализ_данных #dataframe

2024-06-18

Pandas НЕ для анализа данных

В среде питонистов библиотека Pandas пользуется большой популярностью и по большей мере известна в контексте DataSciense и анализа данных. DataFrame пандас позволяет не только всячески манипулировать данными, но и выводить их в нужном формате, предоставляя широкие возможности для кастомизации. Например, использовали ли вы объекты класса Styler , входящего в состав Pandas? Мне показалось интересным взглянуть на Pandas с этой стороны.

habr.com/ru/articles/822793/

#python #pandas #django #dataframe #html #server_side_rendering

2024-06-09

Why Ibis?

Ibis defines a that executes on any query engine – the for any data platform, with 20+ backends today. This allows Ibis to have excellent performance – as good as the backend it is connected to – with a consistent user experience.

ibis-project.org/

2024-06-03

Interesting quasi replacement for pandas (?). Worth looking into. #polars #dataframe #rust #pandas : "Polars — Why we have rewritten the string data type"(pola.rs/posts/polars-string-ty)

2024-06-03

Interesting but so high level that I am not sure it is super useful. #polars #rust #dataframe #architecture #explainer #query #query-optimization : "Polars — A bird's eye view of Polars"(pola.rs/posts/polars_birds_eye)

Ibis is the portable Python dataframe library. Ibis defines a Python dataframe API that executes on any query engine – the frontend for any backend data platform, with 20+ backends today.

Ibis provides a common API for data manipulation in Python, and compiling that API into the backend’s native language. This means you can learn a single API and use it across any supported backend.

ibis-project.org/

#python #ibis #dataframe #api #frontend

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst