Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-12-02

๐ŸŽ™๏ธ How do you tackle extreme physics experiments? Ethan Smith shares insights with Alex Andorra

โœ… Bayesian inference for sparse, noisy data
โœ… Priors guide well-established physical models
โœ… Scaling Bayesian workflows across teams

๐ŸŽง lnkd.in/geA2kQm6

#Bayesian #LearningBayesianStats

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-11-14

๐ŸŽ™๏ธ What does it take to grow in tech? Jordan Thibodeau shares lessons from years inside top tech cultures with Alex Andorra

โœ… Bayesian thinking as a practical advantage

โœ… AI amplifies skill, not replaces it

โœ… Networking & sharing knowledge matter

๐ŸŽง lnkd.in/ghk6D6nH

#bayes #career

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-11-01

Bayesian deep learning helps ML models understand their uncertainty

In this episode Alex Andorra talks with Maurizio Filippone about Gaussian Processes, scalable inference, MCMC, and Bayesian deep learning at scale

๐ŸŽง learnbayesstats.com/episode/14

#BayesianStats #AI #ML #Bayes

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-10-17

๐Ÿฝ๏ธ Can better nutrition science come from better statistics?

In the latest episode, Alex Andorra chats with Christoph Bamberg about using a Bayesian mindset to make psychology & nutrition research more transparent and actionable

๐ŸŽง learnbayesstats.com/episode/14

#bayes #nutrition

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-10-06

๐Ÿค”How do you keep Bayesian rigor when the dataโ€™s too big to behave?

Gabriel Stechschulte joins Alex Andorra on Learning Bayesian Statistics to talk BART and how theyโ€™re bridging classic stats with modern, large-scale systems.

๐ŸŽง Listen here: learnbayesstats.com/episode/14

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-09-20

๐Ÿงช Causal inference is about understanding why things happen, not just what

Alex Andorra talks with Sam Witty about ChiRho & how probabilistic programming is reshaping interventions, counterfactuals, and the future of causal reasoning

๐ŸŽงlearnbayesstats.com/episode/14

#CausalInference #BayesianStatistics #Podcast #DataScience #AIResearch #LearningBayesianStatistics #NewEpisode

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-09-09

๐Ÿˆ NFL meets Bayesian stats!

In this episode Alex Andorra chats with Ron Yurko on

๐Ÿ‘‰ Writing your own models
๐Ÿ‘‰ Building a sports analytics portfolio
๐Ÿ‘‰ Pitfalls of modelling expectations
๐Ÿ‘‰ Using tracking data for player insights
๐Ÿ‘‰ Causal thinking in football data

๐ŸŽง lnkd.in/gWz4v2JG

#bayesian #podcast #learningbayesianstatistics #SportsAnalytics #NFL #statistics

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-08-22

What if your optimization algorithm could explain its uncertainty as clearly as its results?โ€ ๐Ÿค”

In this episode๐ŸŽ™๏ธ Alex Andorra dives into Bayesian optimization, BoTorch, and why uncertainty matters with Maximilian Balandat

๐ŸŽง Listen here: lnkd.in/gg6fcfFU

#bayesian #pytorch #podcast

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-08-08

Your deep learning model might be confidently wrong โ€” and in medicine or epidemiology, thatโ€™s dangerous.

In this episode, Alex Andorra chats with Mรฉlodie Monod, Franรงois-Xavier & Yingzhen Li about making neural nets more reliable, Bayesian LLMs & more...

๐ŸŽง lnkd.in/gcaRQXcb

#bayes #llm

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-07-25

Models need more than pattern-matching.
They need causal understanding.

In this episode, Robert Ness joins Alex Andorra to explore:

โšก Why models need real-world biases
๐Ÿง  How causal rep learning is reshaping AI
๐Ÿค– What it takes to add causality to DL

๐ŸŽงlearnbayesstats.com/episode/13

#bayes #podcast

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-07-10

๐Ÿšจ Tired of MCMC cooking your CPU for hours?

Alex Andorra chats with Haavard Rue & Janet van Niekerk about INLA, a fast, deterministic game-changer for inference at scale.

โœ… Handles huge + complex models
โœ… Works with non-Gaussian likelihoods and more ...

๐ŸŽง learnbayesstats.com/episode/13

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-06-28

๐Ÿ” Most Bayesian models arenโ€™t properly checked.
Even when they converge, they might be wrong in ways you wonโ€™t seeโ€”unless you look differently.

In this conversation, Teemu Sรคilynoja joins Alex Andorra to explore SBC, prior predictive checks, posterior SBC and more!

This is the kind of model checking that actually changes your modeling practice.

๐ŸŽง Listen in: learnbayesstats.com/episode/13

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-06-18

Your model says 97% confidence
But should you trust it?

Uncertainty in ML is still a hard problem

Weโ€™re hosting a meetup at Imperial College London on June 24 to dig into it โ€” with our host Alex Andorra and other researchers working on better ways forward

๐Ÿ”— lnkd.in/eainEJ9p

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-06-13

Some people think Rยฒ doesnโ€™t belong in Bayesian models
๐Ÿ‘‡ David Kohns disagrees, and he has the math to back it

๐ŸŽ™๏ธIn this episode Alex Andorra sits down with economist David Kohns to explore how modern Bayesian methods are reshaping time series modelling

๐ŸŽง Listen now: learnbayesstats.com/episode/13

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-05-30

๐ŸŽ™๏ธ Ep. 133 is out now!

Alex Andorra chats with โ€ช Sean P
& Adrian Seyboldt about making Bayesian models more efficient without losing rigor โ€” zero-sum constraints, Cholesky tricks, practical wins & more

๐ŸŽง learnbayesstats.com/episode/13

#Bayesianstats #podcast #LBS

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-05-15

๐ŸŽ™๏ธ In episode #132 of Learning Bayesian Statistics, Alex Andorra speaks with Tom Griffiths about ๐—•๐—ฎ๐˜†๐—ฒ๐˜€๐—ถ๐—ฎ๐—ป ๐—ฐ๐—ผ๐—ด๐—ป๐—ถ๐˜๐—ถ๐—ผ๐—ป ๐—ฎ๐—ป๐—ฑ ๐˜๐—ต๐—ฒ ๐—ณ๐˜‚๐˜๐˜‚๐—ฟ๐—ฒ ๐—ผ๐—ณ ๐—ต๐˜‚๐—บ๐—ฎ๐—ป-๐—”๐—œ ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐—ฎ๐—ฐ๐˜๐—ถ๐—ผ๐—ป.

๐Ÿ”‘ ๐—ž๐—ฒ๐˜† ๐—ฝ๐—ผ๐—ถ๐—ป๐˜๐˜€ ๐—ณ๐—ฟ๐—ผ๐—บ ๐˜๐—ต๐—ฒ ๐—ฐ๐—ผ๐—ป๐˜ƒ๐—ฒ๐—ฟ๐˜€๐—ฎ๐˜๐—ถ๐—ผ๐—ป:

๐Ÿง  ๐—–๐—ผ๐—บ๐—ฝ๐˜‚๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป๐—ฎ๐—น ๐—ฐ๐—ผ๐—ด๐—ป๐—ถ๐˜๐—ถ๐˜ƒ๐—ฒ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐—ฐ๐—ฒ uses math to model intelligence

๐Ÿ“Š ๐—•๐—ฎ๐˜†๐—ฒ๐˜€๐—ถ๐—ฎ๐—ป ๐—ถ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ ๐—ถ๐˜€ ๐—ฐ๐—ฒ๐—ป๐˜๐—ฟ๐—ฎ๐—น to how humans learn and reason

๐Ÿงฉ ๐—œ๐—ป๐—ฑ๐˜‚๐—ฐ๐˜๐—ถ๐˜ƒ๐—ฒ ๐—ฏ๐—ถ๐—ฎ๐˜€๐—ฒ๐˜€ ๐—ฒ๐˜…๐—ฝ๐—น๐—ฎ๐—ถ๐—ป how we generalize from limited data

๐ŸŽฏ ๐—ฃ๐—ฟ๐—ถ๐—ผ๐—ฟ ๐—ฒ๐—น๐—ถ๐—ฐ๐—ถ๐˜๐—ฎ๐˜๐—ถ๐—ผ๐—ป ๐—ฟ๐—ฒ๐˜ƒ๐—ฒ๐—ฎ๐—น๐˜€ implicit beliefs behind decisions

and more ...

๐ŸŽงlearnbayesstats.com/episode/13

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-05-02

โšฝ๏ธ New Learning Bayesian Stats ep!

Alex Andorra & Luke Bornn dive into how tracking data, probabilistic models & optimization are reshaping sports decisions.

๐ŸŽง Listen now: learnbayesstats.com/episode/13

#Datascience #Optimization #SportsAnalytics #BayesStats
#Decisionmaking

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-04-17

๐Ÿงฌ What does real-world impact look like when public healthโ€™s on the line?

๐ŸŽ™๏ธ In episode 130 of LBS, Alex Andorra chats with Adam Kucharski on modelling, crisis response & lessons from recent epidemics.

๐ŸŽง Listen in: learnbayesstats.com/episode/13

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-04-03

What if AI could know when it doesnโ€™t know?

๐ŸŽ™๏ธ Alex Andorra talks with Vincent Fortuin about Bayesian deep learningโ€”why it matters for uncertainty, calibration, and real-world reliability.

๐ŸŽง Tune in: learnbayesstats.com/episode/12

#BayesianDeepLearning #MachineLearning #ReliableAI #AIResearch

Pierre-Simon LaplaceLearnBayesStats@mstdn.science
2025-03-20

โšฝ Football is more than tactics and talentโ€”it's driven by ๐๐š๐ญ๐š. From ๐ฉ๐ฅ๐š๐ฒ๐ž๐ซ ๐ซ๐ž๐œ๐ซ๐ฎ๐ข๐ญ๐ฆ๐ž๐ง๐ญ to ๐ฆ๐š๐ญ๐œ๐ก ๐š๐ง๐š๐ฅ๐ฒ๐ฌ๐ข๐ฌ, data science gives clubs a winning edge.

๐ŸŽง In the latest episode, Alex Andorra sits down with Matthew Penn to break it all down:

๐Ÿ‘‰learnbayesstats.com/episode/12

#FootballAnalytics #DataScience #SportsTech #Recruitment #BayesianStatistics #FootballData

Client Info

Server: https://mastodon.social
Version: 2025.07
Repository: https://github.com/cyevgeniy/lmst