#ggtext

2025-05-17

Add some swag to your ggplots, with fontawesome symbols and colors: nrennie.rbind.io/blog/adding-s #rstats #ggplot #fontawesome #ggtext

2025-04-29

Día 8 | Distribuciones – Histograma | #30DayChartChallenge. | Visualización hecha usando R con los paquetes #ggplot2, #dplyr, #patchwork, #sf, #ggtext, #showtext, #raster, #exactextractr, #ggscale y #scales.

2025-04-28

Day 28 | Uncertainties – Inclusion | #30DayChartChallenge. Visualization made with R using #ggplot2, #dplyr, #ggtext and #showtext | Source: Google Trends.

2025-04-26

Día 9 | Distribuciones – Divergente | #30DatChartChallenge. | Visualización hecha usando R con los paquetes #ggplot2, #dplyr, #patchwork, #sf, #ggtext, #showtext, #raster, #exactextractr and #SPEI.

2025-04-24

Day 24 | Timeseries – Data Day – WHO | #30DayChartChallenge. Visualization made with R using #ggplot2, #dplyr, #showtext, #patchwork, #ggrepel, #glue, #ggtext, #sf and #rnaturalearth. | Source: WHO.

2025-04-23

Day 19 | Timeseries – Smooth | #30DayChartChallenge. Visualization made with R using #ggplot2, #dplyr, #ggtext, #showtext, #patchwork, #sf and #rnaturalearth. | Source: Google Trends

2025-04-15

Day 12 | Distributions – Data Day – Data.gov | #30DayChartChallenge. Visualization made with R using #sf, #tigris, #ggthemes, #patchwork, #tidyverse, #ggtext and #showtext . | Source: data.gov - catalog.data.gov/dataset/biodi

2025-04-15

Day 15 | Relationships – Complicated | #30DayChartChallenge. Visualization made with R using #tidyverse, #ggtext and #showtext . | Source: google trends trends.google.com/trends/explo

2025-04-11

Día 11 | Distribuciones – “Stripes” | #30DayChartChallenge. La visualización fue creada usando R basado en los paquetes: #ggplot2, #dplyr, #sf, #lubridate, #ggtext, #showtext, #RcolorBrewer, #rnaturalearth y #cowplot. Fuente: CHIRPS.

2025-04-07

Day 7 | Distributions– Outliers | #30DayChartChallenge. Visualization made with R using #ggplot2, #tidyverse, #terra, #ggtext, #showtext y #sf. Data source: Sentinel-2 MSI (2019-2024)

2025-04-06

Day 6 | Comparisons – Florence Nightingale (theme day) | #30DayChartChallenge. Visualization made with R using #tidyverse, #ggtext and #showtext. Data source: HDX - data.humdata.org/dataset/cod-p.

2025-04-05

Day 5 | Comparisons – Ranking | #30DayChartChallenge. Visualization develop with R using #ggplot2, #dplyr, #ggtext, #showtext, #glue and #ggimage. Data source: Opta Analyst.

2025-04-03

Día 3| Comparaciones – Círculos | #30DayChartChallenge. La visualización fue creada usando R basado en los paquetes #sf, #terra, #tidyterra, #extarctexactr, #ggplot2, #dplyr, #scales, #ggnewscale ,#ggtext, #patchwork y #showtext. Fuente SRTM y SIGMOF ICF - geoportal.icf.gob.hn

2025-04-02

Day 2 | Comparisons – Slope | #30DayChartChallenge. Analysis develop with R using #ggplot2, #tidyverse, #ggpmisc, , #terra, #ggtext, #showtext y #sf. Data source: Sentinel-2 MSI (2019-2024)

2025-04-01

Día 1 | Comparaciones – Fracciones | #30DayChartChallenge. La visualización fue creada usando R basado en los paquetes #ggplot2, #dplyr, #scales, #ggtext, #patchwork, #showtext, #sf, #rnaturalearth, #rnaturalearthdata y #ggrepel. Fuente HDX - data.humdata.org/dataset/cod-p

2025-01-21

Add some swag to your ggplots, with fontawesome symbols and colors: nrennie.rbind.io/blog/adding-s #rstats #ggplot #fontawesome #ggtext

2024-09-26

Add some swag to your ggplots, with fontawesome symbols and colors: nrennie.rbind.io/blog/adding-s #rstats #ggplot #fontawesome #ggtext

Aditya Dahiyaadityadahiya
2024-08-22

Ages of English Monarchs at the time of their marriages. Males have always been older.
Data: @wikipedia @royalfamily
Code🔗tinyurl.com/tidy-monarchs
Tools @clauswilke@genart.social

A horizontal lollipop bar chart, showing the ages of English monarchs and their consorts. The ages are in brackets along with names, below their portrait. The age difference is written in the intervening segment. The Y-axis represents the marriage age, and the X-axis shows the ages.
Aditya Dahiyaadityadahiya
2024-07-12

How health burdens have shifted over 4 decades? Infections down in , lifestyle disorders up in , and rising mental health issues in .
Data: IHME. Our World in Data.
Code🔗tinyurl.com/daly-spdr
Tools:

This graphic presents four radar charts comparing the percentage contributions of seven major health causes to the total Disability Adjusted Life Years (DALYs) in India, USA, and China for the years 1990, 2000, 2010, and 2020. Each chart provides a visual representation of how the burden of disease has shifted across these countries over the past four decades. Different colors represent each country, highlighting changes in health burdens over time.
Aditya Dahiyaadityadahiya
2024-07-12

A radar chart for health burdens! Infections dominate in , lifestyle disorders and cancers in , and mental health issues in .
Data: IHME. Our World In Data.
Code🔗tinyurl.com/viz-spdr
Tools: ; @clauswilke@genart.social

This radar chart illustrates the percentage contribution of seven major health causes to the total Disability Adjusted Life Years (DALYs) in 2021 for the USA, China, India, and the world. Each vertex represents a different cause category, with colored polygons showing the distribution for each region, allowing for a comparative view of the health burdens across these entities.

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst