#Clustering

Fascinating work, @gaenplancher.bsky.social ! #cognitive #aphantasia #clustering #innovative_approach #cognitive_profiles "Uncovering spatial and verbal cognitive profiles in aphantasia through unsupervised clustering" www.researchgate.net/publication/...

(PDF) Uncovering spatial and v...

2025-06-17

New article on my website: A slight speed improvement on the DIANA algorithm

#programming #algorithm #clustering

baillehachepascal.dev/2025/dia

2025-06-11

Don't pass by the new insightful lecture from Dr. Alejandro Rodriguez Garcia, Abdus Salam International Centre for Theoretical Physics (ICTP)!

In this one, Alex provides a comprehensive overview of various clustering methods, including flat, fuzzy, and hierarchical approaches. His lecture not only discusses the mathematical foundations of techniques like k-means and k-medoids but also highlights their practical applications across fields such as image recognition and data classification.

This lecture is an excellent opportunity to deepen your understanding of unsupervised learning and engage critically with advanced clustering methods.

Join Enabla to watch the lecture and interact with Dr. Rodriguez Garcia for free! Ask questions and spark discussions with both him and the rest of the Enabla community: enabla.com/pub/1109/about

#UnsupervisedLearning #MachineLearning #DataScience #Clustering #OpenAccess

The "Exploring Clustering Techniques in Unsupervised Machine Learning for Physical Problem Solving" lecture by Prof. Alejandro Rodriguez Garcia from ICTP is now in Open Access on Enabla!. 0.9 hours, video, English.
2025-05-31

Clustering Machine Learning Certification

🌐 Take the exam online: edchart.com/certificate/cluste
📛 Get your verified digital credential: credly.com/org/edchart-technol

EdChart now offers the Clustering Machine Learning Certification, recognized globally and trusted by professionals. Take the online exam from anywhere in the world, and pay only if you pass.

2025-05-30

Does anyone have an idea why the authors choose the cluster with largest diameter in the DIANA algorithm ?
I'm convinced (implementing and testing it actually confirm it too) that choosing any cluster of size >1 leads to the same result (cause any split occurs inside one cluster and is not influenced by the other clusters) and is less computationally expensive (cause you don't need to search which is the largest cluster).
Cf p.256 of "Finding Groups in Data: An Introduction to Cluster Analysis" by Leonard Kaufman, Peter J. Rousseeuw
books.google.co.jp/books?id=Ye
#programming #algorithm #clustering

Benjamin Rosemannb2m
2025-05-07

Ein lang ersehnter Wunsch von mir: Eigene Methoden in benutzen.

Verfügbar seit Version 3.9.0 und funktioniert seit 3.9.3 auch mit und .

Hier eine Anleitung zur Benutzung im Blog.

fdmlab.landesarchiv-bw.de/work

Clustering Workbench of the Carrot2 search engine is working now. It can
cluster search results by 3 algorithms:
Lingo, STC, or k=means. STC is Suffix Tree Clustering method, a fast, phrase-based clustering method that groups documents based on common, frequent phrases. The screenshot shows search results using Lingo clustering for query:
"survey of AI tools for systematic reviews."

search.carrot2.org/#/workbench

#research #academia #Carrot2
#systematicReview
#clustering #Lingo #STC #k-means

2025-04-25

'Curvature-based Clustering on Graphs', by Yu Tian, Zachary Lubberts, Melanie Weber.

jmlr.org/papers/v26/24-0781.ht

#clustering #communities #clusters

2025-04-14

#30DayChartChallenge Día 14: Kinship! 🌿 Hoy toca visualizar "parentescos" animales, pero basados en ¡similitud de rasgos! #RelationshipsWeek #Animals

Este dendrograma horizontal es el resultado de un clustering jerárquico (hclust Ward.D2) sobre ~170 especies, usando su Masa Corporal y Longevidad Máxima (log-transformadas y escaladas). ¡Muestra quién se agrupa con quién según su estrategia de vida!

Las ramas unen las especies más similares. La longitud horizontal hasta la unión indica cuán diferentes son. Se ven grandes grupos que separan, por ejemplo, animales muy grandes/longevos de otros más pequeños/rápidos. Es una forma de ver la estructura oculta en los datos de rasgos.

(Solo se muestra 1/3 de las etiquetas para no saturar!)

🛠 #rstats #ggplot2 #ggdendro #stats | Datos: Kaggle (S. Banerjee)
📂 Código/Viz: t.ly/Y_fwt

#Day14 #Kinship #dataviz #DataVisualization #Ecology #LifeHistory #AnimalTraits #Clustering #Dendrogram #ggplot2 #Kaggle

Dendrograma horizontal que visualiza el clustering jerárquico de aproximadamente 170 especies animales, basado en la similitud de su masa corporal y longevidad máxima (log-transformadas y escaladas). El árbol se ramifica de izquierda a derecha. Los nombres de las especies (un subconjunto) aparecen como etiquetas en las puntas de las ramas a la derecha. El eje vertical representa las especies/clusters, y el eje horizontal (superior, etiquetado como 'Altura') indica la distancia o disimilitud a la que se unen los clusters. El gráfico utiliza un tema con fondo beige claro y líneas/texto en marrón. Título: "Similitud Animal Basada en Masa y Longevidad". Fuente: Kaggle dataset by S. Banerjee.
2025-04-10

On April 29th, at 2 PM ET, Lari Luoma, one of our Maestro experts from Check Point Professional Services, will provide a technical overview of Maestro along with some best practices. Topics include:

✔ What works, what doesn't based on 10 years of experience with Scalable Platforms
✔ From Security Gateways to cloud level hyper scalable clustering
✔ Working effectively with global command line
✔ Best practice configurations

Looking forward to seeing you there!

RSVP: checkpoint.zoom.us/webinar/reg

#cybersecurity #maestro #scalable #hypercale #clustering

2025-03-27

Exciting news, our paper is out!

"Behavioral Clusters and Lesion Distributions in Ischemic Stroke, Based on NIHSS Similarity Network" on Springer Journal of Healthcare Informatics Research rdcu.be/efgma

With my co-first-author Andrea Zanola and co-authors, we explore the relations between behavioral measures of impairment after stroke, and the underlying brain lesions.
Rather than focusing on covariances at the population level, we first cluster individual behavioral phenotypes, and then explore the typical and significant lesions of each cluster.

Our technique, Repeated Spectral Clustering is performed on a similarity network (derived from the General Distance Measure, handy for ordinal scales!), and the partitions are statistically robust thanks to the aggregation of results from multiple random initializations.

We end up with 5 clusters, 3 of which show reknown principal components of deficits (Left Motor, Righ Motor, Language), and their associate lesions.

Interestingly, this multi-item and multimodal approach allows to distinguish different etiologies for the same deficits, thanks to their different behavioral associations, and the different lesions characterizing each cluster. Even when the single NIHSS measure is a bit "vague"...

We hope that popularizing the General Distance Measure, Repeated Spectral Clustering and this clustering perspective aside of PCA / CCA studies can inspire multimodal approaches in other neuroscientific and biomedical domains!

Many thanks to our co-authors, Antonio Luigi Bisogno, Silvia Facchini, Lorenzo Pini, Manfredo Atzori and Maurizio Corbetta for data, analytic and medical insights, and their guidance throughout the whole process!

#stroke #neuroscience #clustering #machinelearning

A network of 172 nodes with 5 clusters of eightened connection, and lighter connections across the 5 clusters. Each cluster is a set of subjects with similar post-stroke impairments5 radarplots with median profiles  of impairments after stroke, for 5 clusters with similar symptoms.
Below each radarplot, a heatmap of most frequently lesioned areas of the brain, wrt the cluster
2025-03-03

'Bayesian Sparse Gaussian Mixture Model for Clustering in High Dimensions', by Dapeng Yao, Fangzheng Xie, Yanxun Xu.

jmlr.org/papers/v26/23-0142.ht

#sparse #clustering #clusters

2025-02-22

I’m doing a drive swap on my Mini Cluster, swapping out HDDs for SSDs.


A photo of a stack of four 2.5” SSD drives with Kingston’s iconic black and red label.
Teresita Porter 🙋🏻‍♀️DNAdataPhile@ecoevo.social
2025-02-17

**OptimOTU: Taxonomically aware OTU clustering with optimized thresholds and a bioinformatics workflow for metabarcoding data**

arxiv.org/abs/2502.10350

#OTU #clustering #bioinformatics #DNAmetabarcoding

2025-02-15

'An Axiomatic Definition of Hierarchical Clustering', by Ery Arias-Castro, Elizabeth Coda.

jmlr.org/papers/v26/24-1052.ht

#cluster #clustering #hierarchical

IB Teguh TMteguhteja
2025-02-09

Explore Linkage Criteria in Hierarchical Clustering. Understand Single, Complete, Average Linkage, and Ward's Method to enhance your clustering skills.

teguhteja.id/linkage-criteria-

IB Teguh TMteguhteja
2025-02-06

Master K-means Clustering with Rand Index and Adjusted Rand Score. Unlock valuable insights into your data by grouping and evaluating points for maximum clarity.

teguhteja.id/k-means-clusterin

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst