#tomography

2025-05-29

✨ Ever wondered how to effortlessly apply lazy expressions to massive tomographic HDF5 datasets and visualize them instantly in Cat2Cloud? 🤯

🎬 Check out this fantastic new video from our very own Luke Shaw! Discover how a bit of Python 🐍 magic and our user-friendly web interface simplify the process.

👇 Watch the full video to see the magic unfold: ironarray.io/cat2cloud

David Haberthürhabi
2025-05-09

is happy to have spent *so much* time on automated extraction of single fish from 20 combined tomographic scans (20 x 6 fish) a while ago. Because re-doing this on a fresh TB batch of 8 scans (48 fish) of nearly equal fish is done in half a morning. See github.com/habi/sticklebacks for the notebooks.

Screenshot of napari with loaded 3D data
David Haberthürhabi
2025-04-28

is happy to hear that doi.org/10.1101/2024.11.10.622 “has been judged scientifically suitable for publication" in PLOS One after a round of peer review. Once "it meets all outstanding technical requirements" it will be published online. For the moment you all have to read the bioRxiv version. And can nonetheless already look into the full dataset yourself, for example at webknossos.org/links/U8wuIdhmf

Markus Osterhoffsci_photos@troet.cafe
2025-04-04

Biopsie-Stanze direkt aus dem Operationssaal ins 3D-#Röntgenmikroskop.

Das ist heute 1 spannendes FirstTime für die #GINIX @ @DESY #Synchrotron.

#XRayImaging #Tomography

Daniel Pomarèdepomarede
2025-01-28

New paper, just published in Physical Review X Energy, on the muography of the G3 nuclear reactor

by Baptiste Lefevre and co-authors
doi.org/10.1103/PRXEnergy.4.01

The visualization software I developed for contributed in the mapping of the inner, inaccessible structure of the reactor.

▶️ see the video and interactive visualization here: journals.aps.org/prxenergy/abs

A screenshot captured on the frontpage of the Physical Review X Energy webpage showing an article thumbnail image, title, summary and other details. Title reads "3D Reconstruction of a Nuclear Reactor by Muon Tomography: Structure Validation and Anomaly Detection". Summary reads "Muon tomography, a non-invasive technique that can be used to image large, inaccessible structures, is combined with machine learning to create a 3D reconstruction of a historical nuclear reactor that reveals material density variations, including potential anomalies in the graphite core." Dated 28 January, 2025. Thumbnail image shows a 3D reconstructions and slices of the density field of the reactor.A screenshot of a figure of the article, featuring a black on white  technical drawing mixed with a colorful 3D visualization. Captions reads "3D visualization of the postprocessing of SART’s real data reconstruction, showing an isosurface of the density field 𝑑 =1.5 together with a 𝑦 =0 slice and the corresponding technical drawing. This 3D visualization is complemented by a video in Supplemental Material".A screenshot of a figure of the article, featuring a colorful 3D visualization against a white background. Caption reads "3D visualization of the postprocessing of SART’s real data reconstruction, showing an isosurface of 𝑑 =1.5 together with 𝑦 =0 and 𝑧 =0 slices. This three-dimensional rendering of the density field is complemented by an interactive 3D visualization in Supplemental Material".
2025-01-23

Gleich beginnt die nächste Postersitzung beim #DESY Nutzerinnentreffen #UM25 – mein heutiger Beitrag:

"#FPGA Based Live-Reco for #Tomography: Preparing for 4th Generation Data Rates"

Mit dem Upgrade zum #PetraIV #Synchrotron erwarten wir eine rund hundertfach höhere Datenrate, speziell in der Parallelstrahl-#Tomografie an der #GINIX könnten es ca. 3 Petabyte täglich werden. Hier studieren wir eine Live-Rekonstruktion des Datenstroms mittels programmiererbarer Hardware.

sci.photos/QR/UM25/#ginix

Das wissenschaftliche Poster beschreibt den Einsatz von FPGAs (Field Programmable Gate Arrays) in der Echtzeit-Tomographie und deren Vorbereitung auf die Datenvolumen der vierten Generation von Synchrotronstrahlungsquellen. Es wurde von der Universität Göttingen und DESY Photon Science entwickelt.

– FPGA Based Live-Reco for Tomography: Das Poster stellt dar, wie FPGAs verwendet werden, um die Datenverarbeitung in der Tomographie zu optimieren, insbesondere für das Göttingen Instrument for Nano-Imaging with X-Rays (GINIX) an den PETRA III und IV Strahlrohren.
– Contrast Transfer Function - Fourier Filter: Es wird erläutert, wie die Kontrastübertragungsfunktion mit Hilfe eines Fourier-Filters modelliert und als Faltung im Realraum implementiert wird. Hierbei werden Vorteile der FPGA-basierten Verarbeitung, wie schnelle Fourier-Transformationen und Realraumfaltungen, diskutiert.
– Fourier vs. Convolution: Vergleich der Methoden in Bezug auf die Bildrekonstruktion und Datenverarbeitungseffizienz.
– GINIX II @ PETRA IV: Processing Problem: Ein Abschnitt des Posters befasst sich mit den Herausforderungen der Datenverarbeitung bei hochauflösender Nano-Bildgebung, wobei Lösungsansätze über FPGAs aufgezeigt werden.
– FPGAs as Pipelined Streaming Processor: Hier wird die Überlegenheit von FPGAs gegenüber traditionellen CPUs hervorgehoben, insbesondere hinsichtlich ihrer Programmierbarkeit und Fähigkeit zur Verarbeitung von Streaming-Daten.

[ChatGPT 4o]
Bose-Einstein-KondensatMWNautilus@mstdn.social
2024-08-30

#OPTImAL: #Optical projection #tomography implemented for #OpenSource accessibility & low cost:

-#LED excitation
-#motorized rotation stage
-#GPU-based #image reconstruction (#MATLAB/#ASTRA)

doi.org/10.1098/rsta.2023.0101
#DIYbio #lab #instruments #fluorescence #imaging #MicroManager

Bose-Einstein-KondensatMWNautilus@mstdn.social
2024-06-01

ABI EIT: A wearable #OpenSource electrical #impedance #tomography (#EIT) device:

-#medical #imaging
-monitoring #lung/#cardiac function, #brain activity
-cost: ~US$260
-#3Dprinted parts
-#Teensy controller

doi.org/10.1016/j.ohx.2024.e00
#DIYbio #lab #instruments #medicine #diagnostics

2024-05-14

Keynote by Joost Batenburg: Real-time #Imaging Pipelines for #Tomography

- filtered back projection: einfacher & schneller Algorithmus, Messung nicht ideal genug
- iterative Rekonstruktionen: langsam
- algebraische Filter: schnell & gut

#HIConference2024 #HelmholtzImaging

Vortragssaal### Zusammenfassung der Folie

**Titel:** Real-Time 3D Tomography

**Prozessbeschreibung:**

1. **Schnelles Scannen:**
   - Der Prozess beginnt mit einem schnellen Scan des Objekts.
   - Bild: Ein Gerät, das für den kontinuierlichen Scan verwendet wird.

2. **Echtzeit-Bildberechnung:**
   - Die gescannten Daten werden in Echtzeit zu einem 3D-Bild verarbeitet.
   - Bild: Ein Server oder Rechner, der die Datenverarbeitung durchführt.

3. **Analyse/Visualisierung:**
   - Das erzeugte 3D-Bild kann sofort analysiert und visualisiert werden.
   - Bild: Eine Person, die die Ergebnisse auf einem Monitor betrachtet.

4. **Adaptives Scannen:**
   - Basierend auf der Analyse können weitere adaptive Scans durchgeführt werden, um die Bildqualität zu verbessern oder spezifische Bereiche genauer zu untersuchen.
   - Bild: Ein vergrößertes Detailbild, das den adaptiven Scanprozess darstellt.

**Zusammenhang:**
- Der Zyklus zeigt, wie der Prozess der Echtzeit-3D-Tomographie kontinuierlich verfeinert wird, indem schnelle Scans und sofortige Analysen kombiniert werden, um detaillierte und präzise 3D-Bilder zu erzeugen.
2024-03-08

'Convergence for nonconvex ADMM, with applications to CT imaging', by Rina Foygel Barber, Emil Y. Sidky.

jmlr.org/papers/v25/21-0831.ht

#tomography #nonconvex #optimization

Matt Willemsenmattotcha
2024-02-06

Client Info

Server: https://mastodon.social
Version: 2025.04
Repository: https://github.com/cyevgeniy/lmst